
	
		
			mechanics.pl

			Dydaktyka - Pokaż plik

		

	

	
	
			Strona główna
	Materiały dydaktyczne
	Kontakt

	

	

	
		
		

			
				
				 [image: back]pobieranie: Using Simulink v5 (ang)
[image: pdf] Pobierz dokument pdf
[6.45 MB]

Przeglądaj wersję html pliku:Using Simulink v5 (ang)

Simulink

®

Model-Based and System-Based Design

Using Simulink
Version 5

How to Contact The MathWorks:
www.mathworks.com comp.soft-sys.matlab support@mathworks.com suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com

Web Newsgroup Technical support Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information Phone Fax Mail

508-647-7000 508-647-7001 The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site. Using Simulink © COPYRIGHT 1990 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc. FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government’s use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks. MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and TargetBox is a trademark of The MathWorks, Inc. Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: November 1990 December 1996 January 1999 November 2000 June 2001 July 2002 September 2003 October 2004

First printing Second printing Third Printing Fourth printing Online only Fifth Printing Online only Online only

New for Simulink 1 Revised for Simulink 2 Revised for Simulink 3 (Release 11) Revised for Simulink 4 (Release 12) Revised for Simulink 4.1 (Release 12.1) Revised for Simulink 5 (Release 13) Revised for Simulink 5.1 (Release 13SP1) Revised for Simulink 5.2 (Release 13SP2)

Contents
About This Guide

To the Reader . xvi What Is Simulink? . xvi Using This Manual . xvii Related Products . xix Typographical Conventions . xxii

Quick Start

1
Running a Demo Model . Description of the Demo . Some Things to Try . What This Demo Illustrates . Other Useful Demos .
1-2 1-3 1-4 1-5 1-5

Building a Simple Model . 1-7 Setting Simulink Preferences . Miscellaneous Preferences . Font Preferences . Simulation Preferences .
1-16 1-17 1-18 1-19

i

How Simulink Works

2
Introduction . 2-2 Modeling Dynamic Systems . 2-3 Block Diagram Semantics . 2-3 Creating Models . 2-4 Time . 2-4 States . 2-4 Block Parameters . 2-7 Tunable Parameters . 2-8 Block Sample Times . 2-8 Custom Blocks . 2-9 Systems and Subsystems . 2-9 Signals . 2-10 Block Methods . 2-10 Model Methods . 2-12 Simulating Dynamic Systems . Model Compilation . Link Phase . Simulation Loop Phase . Solvers . Zero-Crossing Detection . Algebraic Loops . Modeling and Simulating Discrete Systems Specifying Sample Time . Purely Discrete Systems . Multirate Systems . Determining Step Size for Discrete Systems Sample Time Propagation . Invariant Constants . Mixed Continuous and Discrete Systems
2-13 2-13 2-15 2-15 2-17 2-19 2-24 2-28 2-28 2-31 2-31 2-32 2-33 2-34 2-35

ii

Contents

Simulink Basics

3
Starting Simulink . 3-2 Opening Models . 3-4 Entering Simulink Commands . Using the Simulink Menu Bar to Enter Commands Using Context-Sensitive Menus to Enter Commands Using the Simulink Toolbar to Enter Commands Using the MATLAB Window to Enter Commands Undoing a Command .
3-5 3-5 3-5 3-5 3-6 3-6

Simulink Windows . 3-7 Status Bar . 3-7 Zooming Block Diagrams . 3-7 Saving a Model . 3-9 Saving a Model in Earlier Formats . 3-9 Printing a Block Diagram . Print Dialog Box . Print Command . Specifying Paper Size and Orientation Positioning and Sizing a Diagram .
3-12 3-12 3-13 3-14 3-15

Generating a Model Report . 3-16 Model Report Options . 3-17 Summary of Mouse and Keyboard Actions Manipulating Blocks . Manipulating Lines . Manipulating Signal Labels . Manipulating Annotations .
3-19 3-19 3-20 3-20 3-21

Ending a Simulink Session . 3-22

iii

Creating a Model

4
Creating a New Model . 4-2 Selecting Objects . 4-3 Selecting One Object . 4-3 Selecting More Than One Object . 4-3 Specifying Block Diagram Colors . Choosing a Custom Color . Defining a Custom Color . Specifying Colors Programmatically . Enabling Sample Time Colors .
4-5 4-5 4-6 4-6 4-7

Connecting Blocks . 4-9 Automatically Connecting Blocks . 4-9 Manually Connecting Blocks . 4-11 Disconnecting Blocks . 4-15 Annotating Diagrams . 4-16 Using TeX Formatting Commands in Annotations 4-17 Creating Annotations Programmatically 4-18 Creating Subsystems . Creating a Subsystem by Adding the Subsystem Block Creating a Subsystem by Grouping Existing Blocks Model Navigation Commands . Window Reuse . Labeling Subsystem Ports . Controlling Access to Subsystems . Creating Conditionally Executed Subsystems Enabled Subsystems . Triggered Subsystems . Triggered and Enabled Subsystems . Control Flow Blocks .
4-20 4-20 4-21 4-23 4-23 4-24 4-24 4-26 4-26 4-31 4-35 4-38

Model Discretizer . 4-49 Requirements . 4-49

iv

Contents

Discretizing a Model from the Model Discretizer GUI Viewing the Discretized Model . Discretizing Blocks from the Simulink Model Discretizing a Model from the MATLAB Command Window . Using Callback Routines . Tracing Callbacks . Creating Model Callback Functions . Creating Block Callback Functions . Port Callback Parameters . Managing Model Versions . Specifying the Current User . Model Properties Dialog Box . Creating a Model Change History . Version Control Properties .

4-50 4-59 4-62 4-70 4-71 4-71 4-71 4-73 4-76 4-77 4-77 4-79 4-83 4-85

Working with Blocks

5
About Blocks . 5-2 Block Data Tips . 5-2 Virtual Blocks . 5-2 Editing Blocks . Copying and Moving Blocks from One Window to Another . . . Moving Blocks in a Model . Copying Blocks in a Model . Deleting Blocks .
5-4 5-4 5-5 5-6 5-6

Setting Block Parameters . 5-7 Setting Block-Specific Parameters . 5-7 Tuning Parameters . 5-7 Changing Source Block Parameters . 5-9 Block Properties Dialog Box . 5-10 State Properties Dialog Box . 5-13

v

Changing a Block’s Appearance . Changing the Orientation of a Block . Resizing a Block’s Icon . Displaying Parameters Beneath a Block’s Icon Using Drop Shadows . Manipulating Block Names . Specifying a Block’s Color .

5-15 5-15 5-15 5-16 5-16 5-16 5-18

Controlling and Displaying Block Execution Order 5-19 Assigning Block Priorities . 5-19 Displaying Block Execution Order . 5-20 Look-Up Table Editor . Browsing LUT Blocks . Editing Table Values . Displaying N-D Tables . Plotting LUT Tables . Editing Custom LUT Blocks . Working with Block Libraries . Terminology . Simulink Block Library . Creating a Library . Modifying a Library . Creating a Library Link . Disabling Library Links . Modifying a Linked Subsystem . Propagating Link Modifications . Updating a Linked Block . Breaking a Link to a Library Block . Finding the Library Block for a Reference Block Library Link Status . Displaying Library Links . Getting Information About Library Blocks Browsing Block Libraries . Adding Libraries to the Library Browser
5-21 5-22 5-23 5-24 5-25 5-26 5-28 5-28 5-28 5-29 5-29 5-29 5-30 5-30 5-31 5-31 5-31 5-32 5-33 5-33 5-35 5-35 5-37

vi

Contents

Working with Signals

6
Signal Basics . 6-2 About Signals . 6-2 Control Signals . 6-4 Signal Buses . 6-5 Signal Glossary . 6-6 Determining Output Signal Dimensions 6-7 Signal and Parameter Dimension Rules 6-8 Scalar Expansion of Inputs and Parameters 6-9 Setting Signal Properties . 6-10 Signal Properties Dialog Box . 6-11 Working with Complex Signals . 6-14 Checking Signal Connections . 6-15 Displaying Signals . Signal Names . Signal Labels . Displaying Signals Represented by Virtual Signals Working with Signal Groups . Creating a Signal Group Set . The Signal Builder Dialog Box . Editing Signal Groups . Editing Signals . Editing Waveforms . Signal Builder Time Range . Exporting Signal Group Data . Simulating with Signal Groups . Simulation Options Dialog Box .
6-16 6-17 6-18 6-19 6-20 6-20 6-21 6-23 6-23 6-25 6-29 6-30 6-30 6-31

vii

Working with Data

7
Working with Data Types . Data Types Supported by Simulink . Fixed-Point Data . Block Support for Data and Numeric Signal Types Specifying Block Parameter Data Types Creating Signals of a Specific Data Type Displaying Port Data Types . Data Type Propagation . Data Typing Rules . Enabling Strict Boolean Type Checking Typecasting Signals . Typecasting Parameters .
7-2 7-2 7-3 7-4 7-4 7-4 7-5 7-5 7-5 7-6 7-6 7-6

Working with Data Objects . 7-9 Data Object Classes . 7-9 Creating Data Objects . 7-10 Accessing Data Object Properties . 7-11 Invoking Data Object Methods . 7-11 Saving and Loading Data Objects . 7-12 Using Data Objects in Simulink Models 7-12 Creating Data Object Classes . 7-14 The Simulink Data Explorer . 7-27 Associating User Data with Blocks . 7-29

Modeling with Simulink

8
Modeling Equations . 8-2 Converting Celsius to Fahrenheit . 8-2 Modeling a Simple Continuous System 8-3 Avoiding Invalid Loops . 8-6

viii Contents

Tips for Building Models . 8-8

Browsing and Searching Models

9
Finding Objects . 9-2 Filter Options . 9-3 Search Criteria . 9-4 The Model Browser . 9-8 Using the Model Browser on Windows . 9-8 Using the Model Browser on UNIX . 9-10

Running a Simulation

10
Simulation Basics . Specifying Simulation Parameters . Controlling Execution of a Simulation Interacting with a Running Simulation
10-2 10-3 10-4 10-7

The Simulation Parameters Dialog Box 10-8 The Solver Pane . 10-8 The Workspace I/O Pane . 10-18 The Diagnostics Pane . 10-25 The Advanced Pane . 10-30 Diagnosing Simulation Errors . 10-37 Simulation Diagnostic Viewer . 10-37 Creating Custom Simulation Error Messages 10-38 Improving Simulation Performance and Accuracy 10-41 Speeding Up the Simulation . 10-41 Improving Simulation Accuracy . 10-42

ix

Running a Simulation Programmatically 10-43 Using the sim Command . 10-43 Using the set_param Command . 10-43

Analyzing Simulation Results

11
Viewing Output Trajectories . Using the Scope Block . Using Return Variables . Using the To Workspace Block .
11-2 11-2 11-2 11-3

Linearizing Models . 11-4 Finding Steady-State Points . 11-7

Creating Masked Subsystems

12
About Masks . 12-2 Mask Features . 12-2 Creating Masks . 12-4 Masked Subsystem Example . Creating Mask Dialog Box Prompts . Creating the Block Description and Help Text Creating the Block Icon .
12-5 12-6 12-8 12-8

Masking a Subsystem . 12-10 The Mask Editor . The Icon Pane . The Parameters Pane . Control Types .
12-12 12-14 12-17 12-20

x

Contents

The Initialization Pane . 12-23 The Documentation Pane . 12-25 Linking Mask Parameters to Block Parameters 12-28 Creating Dynamic Dialogs for Masked Blocks 12-29 Setting Masked Block Dialog Parameters 12-29 Predefined Masked Dialog Parameters 12-30

Simulink Debugger

13
Introduction . 13-2 Using the Debugger’s Graphical User Interface 13-3 Toolbar . 13-4 Breakpoints Pane . 13-6 Simulation Loop pane . 13-7 Outputs Pane . 13-8 Sorted List Pane . 13-9 Status Pane . 13-10 Using the Debugger’s Command-Line Interface Method ID . Block ID . Accessing the MATLAB Workspace .
13-11 13-11 13-11 13-11

Getting Online Help . 13-12 Starting the Debugger . 13-13 Starting a Simulation . 13-14 Running a Simulation Step by Step Stepping Commands . Continuing a Simulation . Running a Simulation Nonstop .
13-15 13-17 13-18 13-19

xi

Debug Pointer . 13-20 Setting Breakpoints . 13-22 Setting Unconditional Breakpoints . 13-22 Setting Conditional Breakpoints . 13-24 Displaying Information About the Simulation Displaying Block I/O . Displaying Algebraic Loop Information Displaying System States . Displaying Integration Information .
13-28 13-28 13-30 13-31 13-31

Displaying Information About the Model 13-32 Displaying a Model’s Sorted Lists . 13-32 Displaying a Block . 13-33 . 13-36

Performance Tools

14
About the Simulink Performance Tools Option 14-2 The Simulink Accelerator . 14-3 Accelerator Limitations . 14-3 How the Accelerator Works . 14-3 Runnning the Simulink Accelerator . 14-4 Handling Changes in Model Structure 14-5 Increasing Performance of Accelerator Mode 14-6 Blocks That Do Not Show Speed Improvements 14-7 Using the Simulink Accelerator with the Simulink Debugger 14-8 Interacting with the Simulink Accelerator Programmatically 14-9 Comparing Performance . 14-10 Customizing the Simulink Accelerator Build Process 14-11 Controlling S-Function Execution . 14-12 Profiler . 14-13

xii

Contents

How the Profiler Works . 14-13 Enabling the Profiler . 14-15 The Simulation Profile . 14-16 Model Coverage Tool . How the Model Coverage Tool Works Using the Model Coverage Tool . Creating and Running Test Cases . The Coverage Report . Coverage Settings Dialog Box . HTML Settings . Model Coverage Commands .
14-19 14-19 14-22 14-23 14-24 14-30 14-35 14-36

xiii

xiv Contents

About This Guide
The following sections provide information about Simulink documentation and related products. To the Reader (p. xvi) Related Products (p. xix) Typographical Conventions (p. xxii) Introduces Simulink. Describes MathWorks products that enhance or complement Simulink. Typographical conventions used in Simulink documentation.

About This Guide

To the Reader
Welcome to Simulink®! In the last few years, Simulink has become the most widely used software package in academia and industry for modeling and simulating dynamic systems. Simulink encourages you to try things out. You can easily build models from scratch, or take an existing model and add to it. You have instant access to all the analysis tools in MATLAB®, so you can take the results and analyze and visualize them. A goal of Simulink is to give you a sense of the fun of modeling and simulation, through an environment that encourages you to pose a question, model it, and see what happens. With Simulink, you can move beyond idealized linear models to explore more realistic nonlinear models, factoring in friction, air resistance, gear slippage, hard stops, and the other things that describe real-world phenomena. Simulink turns your computer into a lab for modeling and analyzing systems that simply wouldn’t be possible or practical otherwise, whether the behavior of an automotive clutch system, the flutter of an airplane wing, the dynamics of a predator-prey model, or the effect of the monetary supply on the economy. Simulink is also practical. With thousands of engineers around the world using it to model and solve real problems, knowledge of this tool will serve you well throughout your professional career.

What Is Simulink?
Simulink is a software package for modeling, simulating, and analyzing dynamic systems. It supports linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of the two. Systems can also be multirate, i.e., have different parts that are sampled or updated at different rates. For modeling, Simulink provides a graphical user interface (GUI) for building models as block diagrams, using click-and-drag mouse operations. With this interface, you can draw the models just as you would with pencil and paper (or as most textbooks depict them). This is a far cry from previous simulation packages that require you to formulate differential equations and difference equations in a language or program. Simulink includes a comprehensive block library of sinks, sources, linear and nonlinear components, and connectors. You can also customize and create your own blocks. For information on creating your own blocks, see the separate Writing S-Functions guide.

xvi

To the Reader

Models are hierarchical, so you can build models using both top-down and bottom-up approaches. You can view the system at a high level, then double-click blocks to go down through the levels to see increasing levels of model detail. This approach provides insight into how a model is organized and how its parts interact. After you define a model, you can simulate it, using a choice of integration methods, either from the Simulink menus or by entering commands in the MATLAB Command Window. The menus are particularly convenient for interactive work, while the command-line approach is very useful for running a batch of simulations (for example, if you are doing Monte Carlo simulations or want to sweep a parameter across a range of values). Using scopes and other display blocks, you can see the simulation results while the simulation is running. In addition, you can change many parameters and see what happens, for “what if” exploration. The simulation results can be put in the MATLAB workspace for postprocessing and visualization. Model analysis tools include linearization and trimming tools, which can be accessed from the MATLAB command line, plus the many tools in MATLAB and its application toolboxes. And because MATLAB and Simulink are integrated, you can simulate, analyze, and revise your models in either environment at any point.

Using This Manual
Because Simulink is graphical and interactive, we encourage you to jump right in and try it. For a useful introduction that will help you start using Simulink quickly, take a look at “Running a Demo Model” in Chapter 1. Browse around the model, double-click blocks that look interesting, and you will quickly get a sense of how Simulink works. If you want a quick lesson in building a model, see “Building a Simple Model” in Chapter 1. For a technical introduction to Simulink, see Chapter 2, “How Simulink Works.” This chapter introduces many key concepts that you will need to understand in order to create and run Simulink models. Chapter 3, “Simulink Basics,” explains how to start Simulink, open and save models, enter commands, and perform other fundamental tasks. Chapter 4, “Creating a Model,” explains in detail how to build and edit models.

xvii

About This Guide

Chapter 5, “Working with Blocks,” describes how to create blocks in a model. Chapter 6, “Working with Signals,” explains how to create signals in a model. Chapter 7, “Working with Data,” explains how to use data types and data objects in a model. Chapter 8, “Modeling with Simulink,” provides a brief introduction to the topic of modeling dynamic systems with Simulink. It also describes solutions to common modeling problems, such as efficiently modeling multirate systems. Chapter 10, “Running a Simulation,” describes how Simulink performs a simulation. It covers simulation parameters and the integration solvers used for simulation, including some of the strengths and weaknesses of each solver that should help you choose the appropriate solver for your problem. It also discusses multirate and hybrid systems. Chapter 11, “Analyzing Simulation Results,” discusses Simulink and MATLAB features useful for viewing and analyzing simulation results. Chapter 12, “Creating Masked Subsystems,” discusses methods for creating your own blocks and using masks to customize their appearance and use. Chapter 13, “Simulink Debugger,” explains how to use the Simulink debugger to debug Simulink models. It also documents debugger commands. Chapter 14, “Performance Tools,” explains how to use the Simulink accelerator and other optional tools that improve the performance of Simulink models. Also, see the Simulink section of the release notes in the MATLAB help browser for information on last-minute changes and any known problems with the current release of the Simulink software.

xviii

Related Products

Related Products
The MathWorks provides several products that are especially relevant to the kinds of tasks you can perform with Simulink. For more information about any of these products, see either • The online documentation for that product if it is installed or if you are reading the documentation from the CD • The MathWorks Web site, at http://www.mathworks.com; see the “products” section The toolboxes listed below all include functions that extend the capabilities of MATLAB. The blocksets all include blocks that extend the capabilities of Simulink.
Product Description

Aerospace Blockset

Model, analyze, integrate, and simulate aircraft, spacecraft, missile, weapon, and propulsion systems Design and simulate IS-95A mobile phone equipment Design and simulate communications systems Design and analyze communications systems Design and analyze feedback control systems Monitor signals with graphical instruments Design and simulate DSP systems Deploy production code onto the Motorola® MPC555

CDMA Reference Blockset Communications Blockset Communications Toolbox Control System Toolbox Gauges Blockset DSP Blockset Embedded Target for Motorola® MPC555

xix

About This Guide

Product

Description

Embedded Target for the TI C6000™ DSP Platform Filter Design Toolbox Fixed-Point Blockset LMI Control Toolbox MATLAB MATLAB Compiler Model Calibration Toolbox Model Predictive Control Toolbox µ-Analysis and Synthesis Toolbox Nonlinear Control Design Blockset Optimization Toolbox SimPowerSystems Real-Time Windows Target Real-Time Workshop® Real-Time Workshop Embedded Coder

Deploy and validate DSP designs on Texas Instruments C6000 digital signal processors Design and analyze advanced floating-point and fixed-point filters Design and simulate fixed-point systems Design robust controllers using convex optimization techniques The Language of Technical Computing Convert MATLAB M-files to C and C++ code Calibrate complex powertrain systems Control large, multivariable processes in the presence of constraints Design multivariable feedback controllers for systems with model uncertainty Optimize design parameters in nonlinear control systems Solve standard and large-scale optimization problems Model and simulate electrical power systems Run Simulink and Stateflow models on a PC in real time Generate C code from Simulink models Generate production code for embedded systems

xx

Related Products

Product

Description

Requirements Management Interface Robust Control Toolbox Signal Processing Toolbox SimMechanics Simulink Performance Tools Simulink Report Generator Stateflow Stateflow Coder System Identification Toolbox Virtual Reality Toolbox xPC Target xPC Target Embedded Option

Use formal requirements management systems with Simulink and MATLAB Design robust multivariable feedback control systems Perform signal processing, analysis, and algorithm development Model and simulate mechanical systems Manage and optimize the performance of large Simulink models Automatically generate documentation for Simulink and Stateflow models Design and simulate event-driven systems Generate C code from Stateflow charts Create linear dynamic models from measured input-output data Create and manipulate virtual reality worlds from within MATLAB and Simulink Perform real-time rapid prototyping using PC hardware Deploy real-time applications on PC hardware

xxi

About This Guide

Typographical Conventions
This manual uses some or all of these conventions.
Item Convention Monospace font Example

Example code

To assign the value 5 to A, enter
A = 5

Function names, syntax, filenames, directory/folder names, user input, items in drop-down lists Buttons and keys Literal strings (in syntax descriptions in reference chapters) Mathematical expressions MATLAB output

Monospace font

The cos function finds the cosine of each array element. Syntax line example is
MLGetVar ML_var_name

Boldface with book title caps
Monospace bold for literals

Press the Enter key.
f = freqspace(n,'whole')

Italics for variables Standard text font for functions, operators, and constants
Monospace font

This vector represents the polynomial p = x2 + 2x + 3. MATLAB responds with
A = 5

Menu and dialog box titles New terms and for emphasis Omitted input arguments

Boldface with book title caps

Choose the File Options menu. An array is an ordered collection of information.
[c,ia,ib] = union(...)

Italics (...) ellipsis denotes all of the input/output arguments from preceding syntaxes.
Monospace italics

String variables (from a finite list)

sysc = d2c(sysd,'method')

xxii

1
Quick Start
The following sections use examples to give you a quick introduction to using Simulink to model and simulate dynamic systems. Running a Demo Model (p. 1-2) Building a Simple Model (p. 1-7) Setting Simulink Preferences (p. 1-16) Example of how to run a Simulink model. Example of how to build a Simulink model. How to set Simulink preferences.

1

Quick Start

Running a Demo Model
An interesting demo program provided with Simulink models the thermodynamics of a house. To run this demo, follow these steps:
1 Start MATLAB. See your MATLAB documentation if you’re not sure how to

do this.
2 Run the demo model by typing thermo in the MATLAB Command Window.

This command starts up Simulink and creates a model window that contains this model.

3 Double-click the Scope block labeled Thermo Plots.

The Scope block displays two plots labeled Indoor vs. Outdoor Temp and Heat Cost ($), respectively.
4 To start the simulation, pull down the Simulation menu and choose the

Start command (or, on Microsoft Windows, click the Start button on the Simulink toolbar). As the simulation runs, the indoor and outdoor

1-2

Running a Demo Model

temperatures appear in the Indoor vs. Outdoor Temp plot and the cumulative heating cost appears in the Heat Cost ($) plot.
5 To stop the simulation, choose the Stop command from the Simulation

menu (or click the Pause button on the toolbar). If you want to explore other parts of the model, look over the suggestions in “Some Things to Try” on page 1-4.
6 When you’re finished running the simulation, close the model by choosing

Close from the File menu.

Description of the Demo
The demo models the thermodynamics of a house using a simple model. The thermostat is set to 70 degrees Fahrenheit and is affected by the outside temperature, which varies by applying a sine wave with amplitude of 15 degrees to a base temperature of 50 degrees. This simulates daily temperature fluctuations. The model uses subsystems to simplify the model diagram and create reusable systems. A subsystem is a group of blocks that is represented by a Subsystem block. This model contains five subsystems: one named Thermostat, one named House, and three Temp Convert subsystems (two convert Fahrenheit to Celsius, one converts Celsius to Fahrenheit). The internal and external temperatures are fed into the House subsystem, which updates the internal temperature. Double-click the House block to see the underlying blocks in that subsystem.

House subsystem

1-3

1

Quick Start

The Thermostat subsystem models the operation of a thermostat, determining when the heating system is turned on and off. Double-click the block to see the underlying blocks in that subsystem.
Thermostat subsystem

Both the outside and inside temperatures are converted from Fahrenheit to Celsius by identical subsystems.

Fahrenheit to Celsius conversion (F2C)

When the heat is on, the heating costs are computed and displayed on the Heat Cost ($) plot on the Thermo Plots Scope. The internal temperature is displayed on the Indoor Temp Scope.

Some Things to Try
Here are several things to try to see how the model responds to different parameters: • Each Scope block contains one or more signal display areas and controls that enable you to select the range of the signal displayed, zoom in on a portion of the signal, and perform other useful tasks. The horizontal axis represents time and the vertical axis represents the signal value. • The Constant block labeled Set Point (at the top left of the model) sets the desired internal temperature. Open this block and reset the value to 80 degrees. Rerun the simulation to see how the indoor temperature and heating costs change. Also, adjust the outside temperature (the Avg Outdoor Temp block) and rerun the simulation to see how it affects the indoor temperature. • Adjust the daily temperature variation by opening the Sine Wave block labeled Daily Temp Variation, changing the Amplitude parameter, and rerunning the simulation.

1-4

Running a Demo Model

What This Demo Illustrates
This demo illustrates several tasks commonly used when you are building models: • Running the simulation involves specifying parameters and starting the simulation with the Start command, described in “Diagnosing Simulation Errors” on page 10-37. • You can encapsulate complex groups of related blocks in a single block, called a subsystem. See “Creating Subsystems” on page 4-20 for more information. • You can create a customized icon and design a dialog box for a block by using the masking feature, described in detail in Chapter 12, “Creating Masked Subsystems.” In the thermo model, all Subsystem blocks have customized icons created using the masking feature. • Scope blocks display graphic output much as an actual oscilloscope does.

Other Useful Demos
Other demos illustrate useful modeling concepts. You can access these demos from the MATLAB Command Window:
1 Click the Start button on the bottom left corner of the MATLAB Command

Window. The Start menu appears.

1-5

1

Quick Start

2 Select Demos from the menu.

The MATLAB Help browser appears with the Demos pane selected.

3 Click the Simulink entry in the Demos pane.

The entry expands to show groups of Simulink demos. Use the browser to navigate to demos of interest. The browser displays explanations of each demo and includes a link to the demo itself. Click on a demo link to start the demo.

1-6

Building a Simple Model

Building a Simple Model
This example shows you how to build a model using many of the model-building commands and actions you will use to build your own models. The instructions for building this model in this section are brief. All the tasks are described in more detail in the next chapter. The model integrates a sine wave and displays the result along with the sine wave. The block diagram of the model looks like this.

To create the model, first enter simulink in the MATLAB Command Window. On Microsoft Windows, the Simulink Library Browser appears.

1-7

1

Quick Start

On UNIX, the Simulink library window appears.

To create a new model on UNIX, select Model from the New submenu of the Simulink library window’s File menu. To create a new model on Windows, select the New Model button on the Library Browser’s toolbar.

New model button

Simulink opens a new model window.

1-8

Building a Simple Model

To create this model, you need to copy blocks into the model from the following Simulink block libraries: • Sources library (the Sine Wave block) • Sinks library (the Scope block) • Continuous library (the Integrator block) • Signal Routing library (the Mux block) You can copy a Sine Wave block from the Sources library, using the Library Browser (Windows only) or the Sources library window (UNIX and Windows). To copy the Sine Wave block from the Library Browser, first expand the Library Browser tree to display the blocks in the Sources library. Do this by clicking the Sources node to display the Sources library blocks. Finally, click the Sine Wave node to select the Sine Wave block. Here is how the Library Browser should look after you have done this.

Simulink library

Sources library

Sine Wave block

Now drag the Sine Wave block from the browser and drop it in the model window. Simulink creates a copy of the Sine Wave block at the point where you dropped the node icon.

1-9

1

Quick Start

To copy the Sine Wave block from the Sources library window, open the Sources window by double-clicking the Sources icon in the Simulink library window. (On Windows, you can open the Simulink library window by right-clicking the Simulink node in the Library Browser and then clicking the resulting Open Library button.) Simulink displays the Sources library window.

The Sine Wave block

Now drag the Sine Wave block from the Sources window to your model window.

1-10

Building a Simple Model

Copy the rest of the blocks in a similar manner from their respective libraries into the model window. You can move a block from one place in the model window to another by dragging the block. You can move a block a short distance by selecting the block, then pressing the arrow keys. With all the blocks copied into the model window, the model should look something like this.

If you examine the block icons, you see an angle bracket on the right of the Sine Wave block and two on the left of the Mux block. The > symbol pointing out of a block is an output port; if the symbol points to a block, it is an input port. A signal travels out of an output port and into an input port of another block through a connecting line. When the blocks are connected, the port symbols disappear.

Input port

Output port

Now it’s time to connect the blocks. Connect the Sine Wave block to the top input port of the Mux block. Position the pointer over the output port on the right side of the Sine Wave block. Notice that the cursor shape changes to crosshairs.

Hold down the mouse button and move the cursor to the top input port of the Mux block.

1-11

1

Quick Start

Notice that the line is dashed while the mouse button is down and that the cursor shape changes to double-lined crosshairs as it approaches the Mux block.

Now release the mouse button. The blocks are connected. You can also connect the line to the block by releasing the mouse button while the pointer is inside the icon. If you do, the line is connected to the input port closest to the cursor’s position.

If you look again at the model at the beginning of this section (see “Building a Simple Model” on page 1-7), you’ll notice that most of the lines connect output ports of blocks to input ports of other blocks. However, one line connects a line to the input port of another block. This line, called a branch line, connects the Sine Wave output to the Integrator block, and carries the same signal that passes from the Sine Wave block to the Mux block. Drawing a branch line is slightly different from drawing the line you just drew. To weld a connection to an existing line, follow these steps:
1 First, position the pointer on the line between the Sine Wave and the Mux

block.

1-12

Building a Simple Model

2 Press and hold down the Ctrl key (or click the right mouse button). Press the

mouse button, then drag the pointer to the Integrator block’s input port or over the Integrator block itself.

3 Release the mouse button. Simulink draws a line between the starting point

and the Integrator block’s input port.

Finish making block connections. When you’re done, your model should look something like this.

Now, open the Scope block to view the simulation output. Keeping the Scope window open, set up Simulink to run the simulation for 10 seconds. First, set the simulation parameters by choosing Simulation Parameters from the Simulation menu.

1-13

1

Quick Start

On the dialog box that appears, notice that the Stop time is set to 10.0 (its default value).

Stop time parameter

Close the Simulation Parameters dialog box by clicking the OK button. Simulink applies the parameters and closes the dialog box. Choose Start from the Simulation menu and watch the traces of the Scope block’s input.

The simulation stops when it reaches the stop time specified in the Simulation Parameters dialog box or when you choose Stop from the Simulation menu or click the Stop button on the model window’s toolbar (Windows only).

1-14

Building a Simple Model

To save this model, choose Save from the File menu and enter a filename and location. That file contains the description of the model. To terminate Simulink and MATLAB, choose Exit MATLAB (on a Microsoft Windows system) or Quit MATLAB (on a UNIX system). You can also enter quit in the MATLAB Command Window. If you want to leave Simulink but not terminate MATLAB, just close all Simulink windows. This exercise shows you how to perform some commonly used model-building tasks. These and other tasks are described in more detail in Chapter 4, “Creating a Model.”

1-15

1

Quick Start

Setting Simulink Preferences
The MATLAB Preferences dialog box allows you to specify default settings for many Simulink options. To display the Preferences dialog box, select Preferences from the Simulink File menu.

1-16

Setting Simulink Preferences

Miscellaneous Preferences
Selecting Simulink in the left hand pane of the preferences dialog box displays a Simulink Preferences pane on the right side of the dialog box.

This pane allows you to specify the following Simulink preferences.

Window reuse
Specifies whether Simulink uses existing windows or opens new windows to display a model’s subsystems (see “Window Reuse” on page 4-23).

Model Browser
Specifies whether Simulink displays the browser when you open a model and whether the browser shows blocks imported from subsystems and the contents of masked subsystems (see “The Model Browser” on page 9-8).

Display
Specifies whether to use thick lines to display nonscalar connections between blocks and whether to display port data types on the block diagram (see “Displaying Signals” on page 6-16).

1-17

1

Quick Start

Callback tracing
Specifies whether to display the model callbacks that Simulink invokes when simulating a model (see “Using Callback Routines” on page 4-71).

Font Preferences
Selecting the Fonts subnode of the Simulink node in the left hand side of the dialog box displays a stack of tabbed panes on the right side of the dialog box.

The panes allow you to specify your preferred fonts for block and line labels and model annotations, respectively.

1-18

Setting Simulink Preferences

Simulation Preferences
Selecting the Simulation node beneath the Simulink node in the left hand side of the dialog box displays a stack of tabbed panes on the right side of the dialog box.

The panes allow you to specify the following preferences.

Solver
Specifies simulation solver options (see “The Solver Pane” on page 10-8).

Workspace
Specifies workspace options for simulating a model (see “The Workspace I/O Pane” on page 10-18).

Diagnostics
Specifies diagnostic options for simulating a model (see “The Diagnostics Pane” on page 10-25).

1-19

1

Quick Start

Advanced
Specifies advanced simulation preferences (see “The Advanced Pane” on page 10-30).

1-20

2
How Simulink Works
The following sections explain how Simulink models and simulates dynamic systems. This information can be helpful in creating models and interpreting simulation results. Introduction (p. 2-2) Modeling Dynamic Systems (p. 2-3) Simulating Dynamic Systems (p. 2-13) Modeling and Simulating Discrete Systems (p. 2-28) Brief overview of Simulink. How Simulink models a dynamic system. How Simulink simulates a dynamic system. How Simulink models and simulates discrete systems.

2

How Simulink Works

Introduction
Simulink is a software package that enables you to model, simulate, and analyze systems whose outputs change over time. Such systems are often referred to as dynamic systems. Simulink can be used to explore the behavior of a wide range of real-world dynamic systems, including electrical circuits, shock absorbers, braking systems, and many other electrical, mechanical, and thermodynamic systems. This section explains how Simulink works. Simulating a dynamic system is a two-step process with Simulink. First, a user creates a block diagram, using the Simulink model editor, that graphically depicts time-dependent mathematical relationships among the system’s inputs, states, and outputs. The user then commands Simulink to simulate the system represented by the model from a specified start time to a specified stop time.

2-2

Modeling Dynamic Systems

Modeling Dynamic Systems
A Simulink block diagram model is a graphical representation of a mathematical model of a dynamic system. A mathematical model of a dynamic system is described by a set of equations. The mathematical equations described by a block diagram model are known as algebraic, differential, and/or difference equations.

Block Diagram Semantics
A classic block diagram model of a dynamic system graphically consists of blocks and lines (signals). The history of these block diagram model is derived from engineering areas such as Feedback Control Theory and Signal Processing. A block itself defines a dynamic system. The relationships between each elementary dynamic system in a block diagram are illustrated by the use of lines connecting the blocks. Collectively the blocks and lines in a block diagram are used to describe an overall dynamic system. Simulink implements these classic block diagram models. It also introduces the notion of two classes of blocks, nonvirtual block and virtual blocks. Nonvirtual blocks are elementary systems. A virtual block is provided for graphical organizational convenience and plays no role in the definition of the system of equations described by the block diagram model. Examples of virtual blocks are the Bus Creator and Bus Selector which are used to reduce block diagram clutter by managing groups of signals as a “bundle”. You will find that you can use virtual blocks to improve the readability of your models. The term `time-based block diagram’ is used to distinguish block diagrams that describe dynamic systems from other forms of block diagrams. Within Simulink, we will simply use the term block diagram (or model) to refer to a time-based block diagram unless the context requires explicit distinction. To summarize time-based block diagrams:
1 Simulink block diagrams define time-based relationships between signals

and state variables. The solution of a block diagram is obtained by evaluating the totality of these relationships over time, where time starts at a user specified “start time” and ends at a user specified “stop time.” Each evaluation of these relationships is referred to as a time step.

2-3

2

How Simulink Works

2 Signals represent quantities that change over time, and the signals are

defined for all points in time between the block diagram’s start and stop time.
3 The relationships between signals and state variables are defined by a set of

equations represented by block. Each block consists of a set of equations (block methods). These equations define a relationship between the input signals, output signals and the state variables. Inherent in the definition of a equation is the notion of parameters, which are the coefficients found within the equation.

Creating Models
Simulink provides a graphical editor that allows you to create and connect instances of block types (see Chapter 4, “Creating a Model”) selected from libraries of block types (see “Simulink Blocks”) via a library browser. Simulink provides libraries of blocks representing elementary systems that can be used as building blocks. The blocks supplied with Simulink are called builtin blocks. You can also create your own block types and use the Simulink editor to create instances of them in a diagram. Blocks that you create are called custom blocks.

Time
Time is an inherit component of Simulink block diagrams in that the results of a block diagram simulation change with time. Put another way, a block diagram represents the instantaneous behavior of a dynamic system. Determining a system’s behavior over time thus entails repeatedly executing the model at intervals, called time steps, from the start of the time span to the end of the time span. Simulink refers to the repeated execution of a model at successive time steps as simulating the system the model represents. It is possible to simulate a system manually, i.e., to execute the model manually. However, this is unnecessary as the Simulink engine performs this task automatically on command from the user.

States
Typically some system, and hence model, outputs are functions of their previous values. Computing a model’s outputs from a block diagram hence entails saving the value of states at the current time step for use in computing

2-4

Modeling Dynamic Systems

the outputs at a subsequent time step. Simulink performs this task during simulation for models that define states. Two types of states can occur in a Simulink model: discrete and continuous states. A continuous state changes continuously. Examples of continuous states are the position and speed of a car. A discrete state is an approximation of a continuous state where the state is updated (recomputed) using finite (periodic or aperiodic) intervals. An example of a discrete state would be the position of your car shown on a digital odometer where it is updated every second as opposed to continuously. In the limit, as the discrete state time interval approaches zero, a discrete state becomes equivalent to a continuous state. Blocks implicitly define a model’s states. In particular, a block that needs some or all of its previous outputs to compute its current outputs implicitly defines a set of states that need to be saved between time steps. Such a block is said to have states. The following is a graphical representation of a block that has states. x (states)

u
(input)

y
(output)

The total number of a model’s states is the sum of all the states defined by all its blocks. Determining the number of states in a diagram requires parsing the diagram to determine the types of blocks that it contains and then aggregating the number of states defined by each instance of a block type that defines states. Simulink performs this task during the Compilation phase of a simulation.

Continuous States
Computing a continuous state entails knowing its rate of change, or derivative. Since the rate of change of a continuous state typically itself changes continuously (i.e., is itself a state), computing the value of a continuous state at the current time step entails integration of its derivative from the start of a simulation. Thus modeling a continuous state entails representing the operation of integration and the process of computing the state’s derivative at each point in time. Simulink block diagrams use Integrator blocks to indicate integration and a chain of operator blocks connected to the integrator block to

2-5

2

How Simulink Works

represent the method for computing the state’s derivative. The chain of blocks connected to the Integrator is a graphical ordinary differential equation (ODE). In general, excluding simple dynamic systems, analytical methods do not exist for integrating the states of real-world dynamic systems represented by ordinary differential equations. Integrating the states requires the use of numerical methods called ODE solvers. These various methods trade computational accuracy for computational workload. Simulink comes with computerized implementations of the most common ODE integration methods and allows you to determine which it uses to integrate states represented by Integrator blocks when simulating a system. Computing the value of a continuous state at the current time step entails integrating its values from the start of the simulation. The accuracy of numerical integration in turn depends on the size of the intervals between time steps. In general, the smaller the time step, the more accurate the simulation. Some ODE solvers, called variable time step solvers, can automatically vary the size of the time step, based on the rate of change of the state, to achieve a specified level of accuracy over the course of a simulation. Simulink allows you to specify the size of the time step in the case of fixed-step solvers or the solver to determine the step size in the case of variable-step solvers. To minimize the computation workload, the variable-step solver chooses the largest step size consistent with achieving an overall level of precision specified by the user for the most rapidly changing model state. This ensures that all model states are computed to the accuracy that you specify.

Discrete States
Computing a discrete state requires knowing the relationship between the current time and its value at the time at which it previously changed value. Simulink refers to this relationship as the state’s update function. A discrete state depends not only on its value at the previous time step but also on the values of a model’s inputs. Modeling a discrete state thus entails modeling the state’s dependency on the systems’ inputs at the previous time step. Simulink block diagrams use specific types of blocks, called discrete blocks, to specify update functions and chains of blocks connected to the inputs of the blocks to model the state’s dependency on system inputs. As with continuous states, discrete states set a constraint on the simulation time step size. Specifically a step size must be chosen that ensure that all the sample times of the model’s states are hit. Simulink assigns this task to a component of the Simulink system called a discrete solver. Simulink provides

2-6

Modeling Dynamic Systems

two discrete solvers: a fixed-step discrete solver and a variable-step discrete solver. The fixed-step discrete solver determines a fixed step size that hits all the sample times of all the model’s discrete states, regardless of whether the states actually change value at the sample time hits. By contrast, the variable-step discrete solver varies the step size to ensure that sample time hits occur only at times when the states change value.

Modeling Hybrid Systems
A hybrid system is a a system that has both discrete and continuous states Strictly speaking a hybrid model is identified as having continuous and discrete sample times from which it follows that the model will have continuous and discrete states. Solving a model of such a system entails choosing a step size that satisfies both the precision constraint on the continuous state integration and the sample time hit constraint on the discrete states. Simulink meets this requirement by passing the next sample time hit as determined by the discrete solver as an additional constraint on the continuous solver. The continuous solver must choose a step size that advances the simulation up to but not beyond the time of the next sample time hit. The continuous solver can take a time step short of the next sample time hit to meet its accuracy constraint but it cannot take a step beyond the next sample time hit even if its accuracy constraint allows it to.

Block Parameters
Key properties of many standard blocks are parameterized. For example, the Constant value of the Simulink Constant block is a parameter. Each parameterized block has a block dialog that lets you set the values of the parameters. You can use MATLAB expressions to specify parameter values. Simulink evaluates the expressions before running a simulation. A parameterized block effectively represents a family of similar blocks. For example, when creating a model, you can set the Constant value parameter of each instance of the Constant block separately so that each instance behaves differently. Because it allows each standard block to represent a family of blocks, block parameterization greatly increases the modeling power of the standard Simulink libraries.

2-7

2

How Simulink Works

Tunable Parameters
Many block parameters are tunable. A tunable parameter is a parameter whose value can change without recompiling the model (see “Model Compilation” on page 2-13 for more information on compiling a Simulink model). For example, the gain parameter of the Gain block is tunable. You can alter the block’s gain while a simulation is running. If a parameter is not tunable and the simulation is running, Simulink disables the dialog box control that sets the parameter.

Note Simulink does not allow you to change the value of source block parameters through a dialog box while a simulation is running. Opening the dialog box of a source block with tunable parameters causes a running simulation to pause. While the simulation is paused, you can edit the parameter values displayed in the dialog box. However, you must close the dialog box to have the changes take effect and allow the simulation to continue.

Simulink allows you to specify that all parameters in your model are nontunable except for those that you specify. This can speed up execution of large models and enable generation of faster code from your model. See “Model parameter configuration” on page 10-30 for more information.

Block Sample Times
Every Simulink block is considered to have a sample time, even continuous blocks (e.g., blocks that define continuous states, such as the Integrator block) and blocks that do not define states, such as the Gain block. Discrete blocks allows you to specify their sample times via a Sample Time parameter. Continuous blocks are considered to have an infinitesimal sample time called a continuous sample time. A block that is neither discrete or continuous is said to have an implicit sample time that it inherits from its inputs. The implicit sample time is continuous if any of the block’s inputs are continuous. Otherwise, the implicit sample time is discrete. An implicit discrete sample time is equal to the shortest input sample time if all the input sample times are integer multiples of the shortest time. Otherwise, the implicit sample time is equal to the fundamental sample time of the inputs, where the fundamental sample time of a set of sample times is defined as the greatest integer divisor of the set of sample times.

2-8

Modeling Dynamic Systems

Simulink can optionally color code a block diagram to indicate the sample times of the blocks it contains, e.g., black (continuous), magenta (constant), yellow (hybrid), red (fastest discrete), and so on. See “Mixed Continuous and Discrete Systems” on page 2-35 for more information.

Custom Blocks
Simulink allows you to create libraries of custom blocks that you can then use in your models. You can create a custom block either graphically or programmatically. To create a custom block graphically, you draw a block diagram representing the block’s behavior, wrap this diagram in an instance of the Simulink Subsystem block, and provide the block with a parameter dialog, using the Simulink block mask facility. To create a block programmatically, you create an M-file or a MEX-file that contains the block’s system functions (see Writing S-Functions). The resulting file is called an S-function. You then associate the S-function with instances of the Simulink S-Function block in your model. You can add a parameter dialog to your S-Function block by wrapping it in a Subsystem block and adding the parameter dialog to the Subsystem block.

Systems and Subsystems
A Simulink block diagram can consist of layers, i.e., be hierarchical. Each layer is defined by a subsystem. A subsystem is part of the overall block diagram and ideally has no impact on the meaning of the block diagram. Subsystems are provided primarily to help in the organizational aspects a block diagram. Subsystem do not define a separate block diagram. Simulink differentiates between two different types of subsystems virtual and nonvirtual subsystems. The main difference is that nonvirtual subsystems provide the ability to control when the contents of the subsystem are evaluated.

Flattening the Model Hierarchy
While preparing a model for execution, Simulink generates internal “systems” that are collections of block methods (equations) that are evaluated together. The semantics of time-based block diagrams do not require creation of these systems. Simulink creates these internal systems as a means to manage the execution of the model. Roughly speaking there will be one system for the top-level block diagram window which is referred to as the root system, and several lower-level systems derived from the nonvirtual subsystem and other

2-9

2

How Simulink Works

elements in the block diagram. You will see these systems in the Simulink Debugger. The act of creating these internal systems is often referred to as flattening the model hierarchy.

Conditionally Executed Subsystems
You can create conditionally executed subsystems that are executed only when a transition occurs on a triggering, function-call, action, or enabling input (see “Creating Conditionally Executed Subsystems” on page 4-26). Conditionally executed subsystems are atomic. Unconditionally executed subsystems are virtual by default. You can, however, designate an unconditionally executed subsystem as atomic. This is useful if you need to ensure that the equations defined by a subsystem are evaluated “together” as a unit.

Signals
Simulink uses the term signal to refer to a time varying quantity that has values at all points in time. Simulink allows you to specify a wide range of signal attributes, including signal name, data type (e.g., 8-bit, 16-bit, or 32-bit integer), numeric type (real or complex), and dimensionality (one-dimensional or two-dimensional array). Many blocks can accept or output signals of any data or numeric type and dimensionality. Others impose restrictions on the attributes of the signals they can handle. In a Simulink block diagram, a line that has an arrow head represents a signal. The source of the signal corresponds to the block that writes to the signal during evaluation of its block methods (equations). The signals are used by other blocks that read the signal during the evaluation of their block methods (equations). A good analogy of the meaning of a signal is to consider a classroom. The teacher is the one responsible for writing on the white board and the students read what is written on the white board when they choose to. This is also true of Simulink signals. A block method can read the signal as frequently as needed.

Block Methods
Blocks represent multiple equations. These equations are represented as block methods in Simulink. These block methods are evaluated (executed) during the execution of a block diagram. The evaluation of these block methods is

2-10

Modeling Dynamic Systems

performed within a simulation loop, where each cycle through the simulation loop represents evaluation of the block diagram at a given point in time.

Method Types
Simulink assigns names to the types of functions performed by block methods. Common method types include: • Outputs Computes the outputs of a block given its inputs at the current time step and its states at the previous time step. • Update Computes the value of the block’s discrete states at the current time step, given its inputs at the current time step and its discrete states at the previous time step. • Derivatives Computes the derivatives of the block’s continuous states at the current time step, given the block’s inputs and the values of the states at the previous time step.

Method Naming Convention
Block methods perform the same types of operations in different ways for different types of blocks. The Simulink user interface and documentation uses dot notation to indicate the specific function performed by a block method:
BlockType.MethodType

For example, Simulink refers to the method that computes the outputs of a Gain block as
Gain.Outputs

The Simulink debugger takes the naming convention one step further and uses the instance name of a block to specify both the method type and the block instance on which the method is being invoked during simulation, e.g.
g1.Outputs

2-11

2

How Simulink Works

Model Methods
In addition to block methods, Simulink also provides a set of methods that compute the model’s properties and its outputs. Simulink similarly invokes these methods during simulation to determine a model’s properties and its outputs. The model methods generally perform their tasks by invoking block methods of the same type. For example, the model Outputs method invokes the Outputs methods of the blocks that it contains in the order specified by the model to compute its outputs. The model Derivatives method similarly invokes the Derivatives methods of the blocks that it contains to determine the derivatives of its states.

2-12

Simulating Dynamic Systems

Simulating Dynamic Systems
Simulating a dynamic system refers to the process of computing a system’s states and outputs over a span of time, using information provided by the system’s model. Simulink simulates a system when you choose Start from the model editor’s Simulation menu, with the system’s model open. A Simulink component called the Simulink Engine responds to a Start command, performing the following steps.

Model Compilation
First, the Simulink engine invokes the model compiler. The model compiler converts the model to an executable form, a process called compilation. In particular, the compiler • Evaluates the model’s block parameter expressions to determine their values. • Determines signal attributes, e.g., name, data type, numeric type, and dimensionality not explicitly specified by the model and checks that each block can accept the signals connected to its inputs. • Simulink uses a process called attribute propagation to determine unspecified attributes. This process entails propagating the attributes of a source signal to the inputs of the blocks that it drives. • Performs block reduction optimizations. • Flattens the model hierarchy by replacing virtual subsystems with the blocks that they contain (see “Solvers” on page 2-17). • Sorts the blocks into the order in which they need to be executed during the execution phase (see “Solvers” on page 2-17). • Determines the sample times of all blocks in the model whose sample times you did not explicitly specify.

Determining Block Update Order
During a simulation, Simulink updates the states and outputs of a model’s blocks once per time step. The order in which the blocks are updated is therefore critical to the validity of the results. In particular, if a block’s outputs are a function of its inputs at the current time step, the block must be updated after the blocks that drive its inputs. Otherwise, the block’s outputs will be

2-13

2

How Simulink Works

invalid. Simulink sorts the blocks into the correct order during the model initialization phase.
Direct-Feedthrough Ports. In order to create a valid update ordering, Simulink

categorizes a block’s input ports according to the relationship of outputs to inputs. An input port whose current value determines the current value of one of the block’s outputs is called a direct-feedthrough port. Examples of blocks that have direct-feedthrough ports include the Gain, Product, and Sum blocks. Examples of blocks that have non-direct-feedthrough inputs include the Integrator block (its output is a function purely of its state), the Constant block (it does not have an input), and the Memory block (its output is dependent on its input in the previous time step).
Block Sorting Rules. Simulink uses the following basic update rules to sort the

blocks: • Each block must be updated before any of the blocks whose direct-feedthrough ports it drives. This rule ensures that the direct-feedthrough inputs to blocks will be valid when the blocks are updated. • Blocks that do not have direct feedthrough inputs can be updated in any order as long as they are updated before any blocks whose direct-feedthrough inputs they drive. Putting all blocks that do not have direct-feedthrough ports at the head of the update list in any order satisfies this rule. It thus allows Simulink to ignore these blocks during the sorting process. The result of applying these rules is an update list in which blocks without direct feedthrough ports appear at the head of the list in no particular order followed by blocks with direct-feedthrough ports in the order required to supply valid inputs to the blocks they drive. During the sorting process, Simulink checks for and flags the occurrence of algebraic loops, that is, signal loops in which a direct-feedthrough output of a block is connected directly or indirectly to the corresponding direct-feedthrough input of the block. Such loops seemingly create a deadlock condition, because Simulink needs the value of the direct-feedthrough input to compute the output. However, an algebraic loop can represent a set of simultaneous algebraic equations (hence the name) where the block’s input and output are the unknowns. Further, these equations can have valid

2-14

Simulating Dynamic Systems

solutions at each time step. Accordingly, Simulink assumes that loops involving direct-feedthrough ports do, in fact, represent a solvable set of algebraic equations and attempts to solve them each time the block is updated during a simulation. For more information, see “Algebraic Loops” on page 2-24.

Link Phase
In this phase, the Simulink Engine allocates memory needed for working areas (signals, states, and run-time parameters) for execution of the block diagram. It also allocates and initializes memory for data structures that store run-time information for each block. For builtin blocks, the principal runtime data structure for a block is called the SimBlock. It stores pointers to a block’s input and output buffers and state and work vectors.

Method Execution Lists
In the Link phase, the Simulink engine also creates method execution lists. These lists list the most efficient order in which to execute a model’s block methods to compute its outputs. Simulink uses the sorted lists generated during the Compile phase to construct the method execution lists.

Block Priorities
Simulink allows you to assign update priorities to blocks (see “Assigning Block Priorities” on page 5-19). Simulink executes the output methods of higher priority blocks before those of lower priority blocks. Simulink honors the priorities only if they are consistent with its block sorting rules.

Simulation Loop Phase
The simulation now enters the simulation loop phase. In this phase, the Simulink engine successively computes the states and outputs of the system at intervals from the simulation start time to the finish time, using information provided by the model. The successive time points at which the states and outputs are computed are called time steps. The length of time between steps is called the step size. The step size depends on the type of solver (see “Solvers” on page 2-17) used to compute the system’s continuous states, the system’s fundamental sample time (see “Modeling and Simulating Discrete Systems” on page 2-28), and whether the system’s continuous states have discontinuities (see “Zero-Crossing Detection” on page 2-19).

2-15

2

How Simulink Works

The Simulation Loop phase has two subphases: the Loop Initialization phase and the Loop Iteration phase. The initialization phase occurs once, at the start of the loop. The iteration phase is repeated once per time step from the simulation start time to the simulation stop time. At the start of the simulation, the model specifies the initial states and outputs of the system to be simulated. At each step, Simulink computes new values for the system’s inputs, states, and outputs and updates the model to reflect the computed values. At the end of the simulation, the model reflects the final values of the system’s inputs, states, and outputs. Simulink provides data display and logging blocks. You can display and/or log intermediate results by including these blocks in your model.

Loop Iteration
At each time step, the Simulink Engine
1 Computes the model’s outputs.

The Simulink Engine initiates this step by invoking the Simulink model Outputs method.The model Outputs method in turn invokes the model system Outputs method, which invokes the Outputs methods of the blocks that the model contains in the order specified by the Outputs method execution lists generated in the Link phase of the simulation (see “Solvers” on page 2-17). The system Outputs method passes the following arguments to each block Outputs method: a pointer to the block’s data structure and to its SimBlock structure. The SimBlock data structures point to information that the Outputs method needs to compute the block’s outputs, including the location of its input buffers and its output buffers.
2 Computes the model’s states.

The Simulink Engine computes a model’s states by invoking a solver. Which solver it invokes depends on whether the model has no states, only discrete states, only continuous states, or both continuous and discrete states. If the model has only discrete states, the Simulink Engine invokes the discrete solver selected by the user. The solver computes the size of the time step needed to hit the model’s sample times. It then invokes the Update

2-16

Simulating Dynamic Systems

method of the model. The model Update method invokes the Update method of its system, which invokes the Update methods of each of the blocks that the system contains in the order specified by the Update method lists generated in the Link phase. If the model has only continuous states, the Simulink Engine invokes the continuous solver specified by the model. Depending on the solver, the solver either in turn calls the Derivatives method of the model once or enters a subcycle of minor time steps where the solver repeatedly calls the model’s Outputs methods and Derivatives methods to compute the model’s outputs and derivatives at successive intervals within the major time step. This is done to increase the accuracy of the state computation. The model Outputs method and Derivatives methods in turn invoke their corresponding system methods, which invoke the block Outputs and Derivatives in the order specified by the Outputs and Derivatives methods execution lists generated in the Link phase.
3 Optionally checks for discontinuities in the continuous states of blocks.

Simulink uses a technique called zero-crossing detection to detect discontinuities in continuous states. See “Zero-Crossing Detection” on page 2-19 for more information.
4 Computes the time for the next time step.

Simulink repeats steps 1 through 4 until the simulation stop time is reached.

Solvers
Simulink simulates a dynamic system by computing its states at successive time steps over a specified time span, using information provided by the model. The process of computing the successive states of a system from its model is known as solving the model. No single method of solving a model suffices for all systems. Accordingly, Simulink provides a set of programs, known as solvers, that each embody a particular approach to solving a model. The Simulation Parameters dialog box allows you to choose the solver most suitable for your model (see “Solvers” on page 10-9).

2-17

2

How Simulink Works

Fixed-Step Solvers Versus Variable-Step Solvers
Simulink solvers fall into two basic categories: fixed-step and variable-step. Fixed-step solvers solve the model at regular time intervals from the beginning to the end of the simulation. The size of the interval is known as the step size. You can specify the step size or let the solver choose the step size. Generally decreasing the step size increases the accuracy of the results while increasing the time required to simulate the system. Variable-step solvers vary the step size during the simulation, reducing the step size to increase accuracy when a model’s states are changing rapidly and increasing the step size to avoid taking unnecessary steps when the model’s states are changing slowly. Computing the step size adds to the computational overhead at each step but can reduce the total number of steps, and hence simulation time, required to maintain a specified level of accuracy for models with rapidly changing or piecewise continuous states.

Continuous Versus Discrete Solvers
Simulink provides both continuous and discrete solvers. Continuous solvers use numerical integration to compute a model’s continuous states at the current time step from the states at previous time steps and the state derivatives. Continuous solvers rely on the model’s blocks to compute the values of the model’s discrete states at each time step. Mathematicians have developed a wide variety of numerical integration techniques for solving the ordinary differential equations (ODEs) that represent the continuous states of dynamic systems. Simulink provides an extensive set of fixed-step and variable-step continuous solvers, each implementing a specific ODE solution method (see “Solvers” on page 10-9). Discrete solvers exist primarily to solve purely discrete models. They compute the next simulation time step for a model and nothing else. They do not compute continuous states and they rely on the model’s blocks to update the model’s discrete states.

2-18

Simulating Dynamic Systems

Note You can use a continuous solver, but not a discrete solver, to solve a model that contains both continuous and discrete states. This is because a discrete solver does not handle continuous states. If you select a discrete solver for a continuous model, Simulink disregards your selection and uses a continuous solver instead when solving the model.

Simulink provides two discrete solvers, a fixed-step discrete solver and a variable-step discrete solver. The fixed-step solver by default chooses a step size and hence simulation rate fast enough to track state changes in the fastest block in your model. The variable-step solver adjusts the simulation step size to keep pace with the actual rate of discrete state changes in your model. This can avoid unnecessary steps and hence shorten simulation time for multirate models (see “Determining Step Size for Discrete Systems” on page 2-32 for more information).

Minor Time Steps
Some continuous solvers subdivide the simulation time span into major and minor time steps, where a minor time step represents a subdivision of the major time step. The solver produces a result at each major time step. It uses results at the minor time steps to improve the accuracy of the result at the major time step.

Zero-Crossing Detection
When simulating a dynamic system, Simulink checks for discontinuities in the system’s state variables at each time step, using a technique known as zero-crossing detection. If Simulink detects a discontinuity within the current time step, it determines the precise time at which the discontinuity occurs and takes additional time steps before and after the discontinuity. This section explains why zero-crossing detection is important and how it works. Discontinuities in state variables often coincide with significant events in the evolution of a dynamic system. For example, the instant when a bouncing ball hits the floor coincides with a discontinuity in its position. Because discontinuities often indicate a significant change in a dynamic system, it is important to simulate points of discontinuity precisely. Otherwise, a simulation could lead to false conclusions about the behavior of the system under investigation. Consider, for example, a simulation of a bouncing ball. If

2-19

2

How Simulink Works

the point at which the ball hits the floor occurs between simulation steps, the simulated ball appears to reverse position in midair. This might lead an investigator to false conclusions about the physics of the bouncing ball. To avoid such misleading conclusions, it is important that simulation steps occur at points of discontinuity. A simulator that relies purely on solvers to determine simulation times cannot efficiently meet this requirement. Consider, for example, a fixed-step solver. A fixed-step solver computes the values of state variables at integral multiples of a fixed step size. However, there is no guarantee that a point of discontinuity will occur at an integral multiple of the step size. You could reduce the step size to increase the probability of hitting a discontinuity, but this would greatly increase the execution time. A variable-step solver appears to offer a solution. A variable-step solver adjusts the step size dynamically, increasing the step size when a variable is changing slowly and decreasing the step size when the variable changes rapidly. Around a discontinuity, a variable changes extremely rapidly. Thus, in theory, a variable-step solver should be able to hit a discontinuity precisely. The problem is that to locate a discontinuity accurately, a variable-step solver must again take many small steps, greatly slowing down the simulation.

How Zero-Crossing Detection Works
Simulink uses a technique known as zero-crossing detection to address this problem. With this technique, a block can register a set of zero-crossing variables with Simulink, each of which is a function of a state variable that can have a discontinuity. The zero-crossing function passes through zero from a positive or negative value when the corresponding discontinuity occurs. At the end of each simulation step, Simulink asks each block that has registered zero-crossing variables to update the variables. Simulink then checks whether any variable has changed sign since the last step. Such a change indicates that a discontinuity occurred in the current time step. If any zero crossings are detected, Simulink interpolates between the previous and current values of each variable that changed sign to estimate the times of the zero crossings (e.g., discontinuities). Simulink then steps up to and over each zero crossing in turn. In this way, Simulink avoids simulating exactly at the discontinuity, where the value of the state variable might be undefined. Zero-crossing detection enables Simulink to simulate discontinuities accurately without resorting to excessively small step sizes. Many Simulink

2-20

Simulating Dynamic Systems

blocks support zero-crossing detection. The result is fast and accurate simulation of all systems, including systems with discontinuities.

Implementation Details
An example of a Simulink block that uses zero crossings is the Saturation block. Zero crossings detect these state events in the Saturation block: • The input signal reaches the upper limit. • The input signal leaves the upper limit. • The input signal reaches the lower limit. • The input signal leaves the lower limit. Simulink blocks that define their own state events are considered to have intrinsic zero crossings. If you need explicit notification of a zero-crossing event, use the Hit Crossing block. See “Blocks with Zero Crossings” on page 2-22 for a list of blocks that incorporate zero crossings. The detection of a state event depends on the construction of an internal zero-crossing signal. This signal is not accessible by the block diagram. For the Saturation block, the signal that is used to detect zero crossings for the upper limit is zcSignal = UpperLimit – u, where u is the input signal. Zero-crossing signals have a direction attribute, which can have these values: • rising – A zero crossing occurs when a signal rises to or through zero, or when a signal leaves zero and becomes positive. • falling – A zero crossing occurs when a signal falls to or through zero, or when a signal leaves zero and becomes negative. • either – A zero crossing occurs if either a rising or falling condition occurs. For the Saturation block’s upper limit, the direction of the zero crossing is either. This enables the entering and leaving saturation events to be detected using the same zero-crossing signal. If the error tolerances are too large, it is possible for Simulink to fail to detect a zero crossing. For example, if a zero crossing occurs within a time step, but the values at the beginning and end of the step do not indicate a sign change, the solver steps over the crossing without detecting it. This figure shows a signal that crosses zero. In the first instance, the integrator steps over the event. In the second, the solver detects the event.

2-21

2

How Simulink Works

not detected

detected

If you suspect this is happening, tighten the error tolerances to ensure that the solver takes small enough steps. For more information, see “Error Tolerances” on page 10-13.

Note Using the Refine output option (see “Refine output” on page 10-15) does not help locate the missed zero crossings. You should alter the maximum step size or output times.

Caveat
It is possible to create models that exhibit high-frequency fluctuations about a discontinuity (chattering). Such systems typically are not physically realizable; a massless spring, for example. Because chattering causes repeated detection of zero crossings, the step sizes of the simulation become very small, essentially halting the simulation. If you suspect that this behavior applies to your model, you can disable zero-crossing detection by selecting the Disable zero crossing detection option on the Advanced pane of the Simulation Parameters dialog box (see “Zero-crossing detection” on page 10-33). Although disabling zero-crossing detection can alleviate the symptoms of this problem, you no longer benefit from the increased accuracy that zero-crossing detection provides. A better solution is to try to identify the source of the underlying problem in the model.

Blocks with Zero Crossings

2-22

Simulating Dynamic Systems

The following table lists blocks that use zero crossings and explains how the blocks use the zero crossings:
Block Description of Zero Crossing

Abs Backlash Dead Zone

One: to detect when the input signal crosses zero in either the rising or falling direction. Two: one to detect when the upper threshold is engaged, and one to detect when the lower threshold is engaged. Two: one to detect when the dead zone is entered (the input signal minus the lower limit), and one to detect when the dead zone is exited (the input signal minus the upper limit). One: to detect when the input crosses the threshold. If the reset port is present, to detect when a reset occurs. If the output is limited, there are three zero crossings: one to detect when the upper saturation limit is reached, one to detect when the lower saturation limit is reached, and one to detect when saturation is left. One: for each element of the output vector, to detect when an input signal is the new minimum or maximum. One: if the relay is off, to detect the switch on point. If the relay is on, to detect the switch off point. One: to detect when the output changes. Two: one to detect when the upper limit is reached or left, and one to detect when the lower limit is reached or left. One: to detect when the input crosses through zero. One: to detect the step time.

Hit Crossing Integrator

MinMax Relay Relational Operator Saturation Sign Step

2-23

2

How Simulink Works

Block

Description of Zero Crossing (Continued)

Subsystem Switch

For conditionally executed subsystems: one for the enable port if present, and one for the trigger port, if present. One: to detect when the switch condition occurs.

Algebraic Loops
Some Simulink blocks have input ports with direct feedthrough. This means that the output of these blocks cannot be computed without knowing the values of the signals entering the blocks at these input ports. Some examples of blocks with direct feedthrough inputs are as follows: • The Math Function block • The Gain block • The Integrator block’s initial condition ports • The Product block • The State-Space block when there is a nonzero D matrix • The Sum block • The Transfer Fcn block when the numerator and denominator are of the same order • The Zero-Pole block when there are as many zeros as poles An algebraic loop generally occurs when an input port with direct feedthrough is driven by the output of the same block, either directly, or by a feedback path through other blocks with direct feedthrough. An example of an algebraic loop is this simple scalar loop.

Mathematically, this loop implies that the output of the Sum block is an algebraic state z constrained to equal the first input u minus z (i.e. z = u – z). The solution of this simple loop is z = u/2, but most algebraic loops cannot be solved by inspection. It is easy to create vector algebraic loops with multiple algebraic state variables z1, z2, etc., as shown in this model.

2-24

Simulating Dynamic Systems

The Algebraic Constraint block is a convenient way to model algebraic equations and specify initial guesses. The Algebraic Constraint block constrains its input signal F(z) to zero and outputs an algebraic state z. This block outputs the value necessary to produce a zero at the input. The output must affect the input through some feedback path. You can provide an initial guess of the algebraic state value in the block’s dialog box to improve algebraic loop solver efficiency. A scalar algebraic loop represents a scalar algebraic equation or constraint of the form F(z) = 0, where z is the output of one of the blocks in the loop and the function F consists of the feedback path through the other blocks in the loop to the input of the block. In the simple one-block example shown on the previous page, F(z) = z – (u – z). In the vector loop example shown above, the equations are z2 + z1 – 1 = 0 z2 – z1 – 1 = 0 Algebraic loops arise when a model includes an algebraic constraint F(z) = 0. This constraint might arise as a consequence of the physical interconnectivity of the system you are modeling, or it might arise because you are specifically trying to model a differential/algebraic system (DAE). When a model contains an algebraic loop, Simulink calls a loop solving routine at each time step. The loop solver performs iterations to determine the solution to the problem (if it can). As a result, models with algebraic loops run slower than models without them.

2-25

2

How Simulink Works

To solve F(z) = 0, the Simulink loop solver uses Newton's method with weak line search and rank-one updates to a Jacobian matrix of partial derivatives. Although the method is robust, it is possible to create loops for which the loop solver will not converge without a good initial guess for the algebraic states z. You can specify an initial guess for a line in an algebraic loop by placing an IC block (which is normally used to specify an initial condition for a signal) on that line. As shown above, another way to specify an initial guess for a line in an algebraic loop is to use an Algebraic Constraint block. Whenever possible, use an IC block or an Algebraic Constraint block to specify

In this case, the input at the u2 port of the adder subsystem is equal to the subsystem’s output at the current time step for every time step. The mathematical representation of this system
z = z + 1

reveals that it has no mathematically valid solution.

Highlighting Algebraic Loops
You can cause Simulink to highlight algebraic loops when you update, simulate, or debug a model. Use the ashow command to highlight algebraic loops when debugging a model. To cause Simulink to highlight algebraic loops that it detects when updating or simulating a model, set the Algebraic loop diagnostic on the Diagnostics pane of the Simulation parameters dialog box to Error (see “Configuration options” on page 10-27 for more information). This causes Simulink to display an error dialog (the Diagnostic Viewer) and recolor portions of the diagram that represent the algebraic loops that it detects. Simulink uses red to color the

2-26

Simulating Dynamic Systems

blocks and lines that constitute the loops. Closing the error dialog restores the diagram to its original colors. For example, the following figure shows the block diagram of the hydcyl demo model in its original colors.

The following figure shows the diagram after updating when the Algebraic loop diagnostic is set to Error.

In this example, Simulink has colored the algebraic loop red, making it stand out from the rest of the diagram.

2-27

2

How Simulink Works

Modeling and Simulating Discrete Systems
Simulink has the ability to simulate discrete (sampled data) systems, including systems whose components operate at different rates (multirate systems) and systems that mix discrete and continuous components (hybrid systems). This capability stems from two key Simulink features: • SampleTime block parameter Some Simulink blocks have a SampleTime parameter that you can use to specify the block’s sample time, i.e., the rate at which it executes during simulation. All blocks have either an explicit or implicit sample time parameter. Continuous blocks are examples of blocks that have an implicit (continuous) sample time. Fishermen, it is possible for a block to have multiple sample times as provided with Blocksets such as the DSP Blockset or created by a user using the S-function block. • Sample-time inheritance Most standard Simulink blocks can inherit their sample time from the blocks connected to their inputs. Exceptions include blocks in the Continuous library and blocks that do not have inputs (e.g., blocks from the Sources library). In some cases, source blocks can inherit the sample time of the block connected to its input. The ability to specify sample times on a block-by-block basis, either directly through the SampleTime parameter or indirectly through inheritance, enables you to model systems containing discrete components operating at different rates and hybrid systems containing discrete and continuous components.

Specifying Sample Time
Simulink allows you to specify the sample time of any block that has a SampleTime parameter. You can use the block’s parameter dialog box to set this parameter. You do this by entering the sample time in the Sample time field on the dialog box. You can enter either the sample time alone or a vector whose first element is the sample time and whose second element is an offset: [Ts, To]. Various values of the sample time and offset have special meanings.

2-28

Modeling and Simulating Discrete Systems

The following table summarizes valid values for this parameter and how Simulink interprets them to determine a block’s sample time.
Sample Time [Ts, To] 0 > Ts < Tsim |To| < Tp Usage

Specifies that updates occur at simulation times
tn = n * Ts + |To|

where n is an integer in the range 1..Tsim/Ts and Tsim is the length of the simulation. Blocks that have a sample time greater than 0 are said to have a discrete sample time. The offset allows you to specify that Simulink update the block later in the sample interval than other blocks operating at the same rate.
[0, 0], 0

Specifies that updates occur at every major and minor time step. A block that has a sample time of 0 is said to have a continuous sample time. Specifies that updates occur only at major time steps, skipping minor time steps (see “Minor Time Steps” on page 2-19). This setting avoids unnecessary computations for blocks whose sample time cannot change between major time steps. The sample time of a block that executes only at major time steps is said to be fixed in minor time step.

[0, 1]

2-29

2

How Simulink Works

Sample Time [-1, 0], -1

Usage

If the block is not in a triggered subsystem, this setting specifies that the block inherits its sample time from the block connected to its input (inheritance) or, in some cases, from the block connected to its output (back inheritance). If the block is in a triggered subsystem, you must set the SampleTime parameter to this setting. Note that specifying sample-time inheritance for a source block can cause Simulink to assign an inappropriate sample time to the block if the source drives more than one block. For this reason, you should avoid specifying sample-time inheritance for source blocks. If you do, Simulink displays a warning message when you update or simulate the model.

Changing a Block’s Sample Time
You cannot change the SampleTime parameter of a block while a simulation is running. If you want to change a block’s sample time, you must stop and restart the simulation for the change to take effect.

Compiled Sample Time
During the compilation phase of a simulation, Simulink determines the sample time of the block from its SampleTime parameter (if it has a SampleTime parameter), sample-time inheritance, or block type (Continuous blocks always have a continuous sample time). It is this compiled sample time that determines the sample rate of a block during simulation. You can determine the compiled sample time of any block in a model by first updating the model and then getting the block’s CompiledSampleTime parameter, using the get_param command.

2-30

Modeling and Simulating Discrete Systems

Purely Discrete Systems
Purely discrete systems can be simulated using any of the solvers; there is no difference in the solutions. To generate output points only at the sample hits, choose one of the discrete solvers.

Multirate Systems
Multirate systems contain blocks that are sampled at different rates. These systems can be modeled with discrete blocks or with both discrete and continuous blocks. For example, consider this simple multirate discrete model.

For this example the DTF1 Discrete Transfer Fcn block’s Sample time is set to [1 0.1], which gives it an offset of 0.1. The DTF2 Discrete Transfer Fcn block’s Sample time is set to 0.7, with no offset. Starting the simulation (see “Running a Simulation Programmatically” on page 10-43) and plotting the outputs using the stairs function
[t,x,y] = sim('multirate', 3); stairs(t,y)

produces this plot

y(2)

y(1)

For the DTF1 block, which has an offset of 0.1, there is no output until t = 0.1. Because the initial conditions of the transfer functions are zero, the output of DTF1, y(1), is zero before this time.

2-31

2

How Simulink Works

Determining Step Size for Discrete Systems
Simulating a discrete system requires that the simulator take a simulation step at every sample time hit, that is, at integer multiples of the system’s shortest sample time. Otherwise, the simulator might miss key transitions in the system’s states. Simulink avoids this by choosing a simulation step size to ensure that steps coincide with sample time hits. The step size that Simulink chooses depends on the system’s fundamental sample time and the type of solver used to simulate the system. The fundamental sample time of a discrete system is the greatest integer divisor of the system’s actual sample times. For example, suppose that a system has sample times of 0.25 and 0.5 second. The fundamental sample time in this case is 0.25 second. Suppose, instead, the sample times are 0.5 and 0.75 second. In this case, the fundamental sample time is again 0.25 second. You can direct Simulink to use either a fixed-step or a variable-step discrete solver to solve a discrete system. A fixed-step solver sets the simulation step size equal to the discrete system’s fundamental sample time. A variable-step solver varies the step size to equal the distance between actual sample time hits. The following diagram illustrates the difference between a fixed-step and a variable-size solver.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Fixed-Step Solver

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Variable-Step Solver

2-32

Modeling and Simulating Discrete Systems

In the diagram, arrows indicate simulation steps and circles represent sample time hits. As the diagram illustrates, a variable-step solver requires fewer simulation steps to simulate a system, if the fundamental sample time is less than any of the actual sample times of the system being simulated. On the other hand, a fixed-step solver requires less memory to implement and is faster if one of the system’s sample times is fundamental. This can be an advantage in applications that entail generating code from a Simulink model (using Real-Time Workshop®).

Sample Time Propagation
The figure below illustrates a Discrete Filter block with a sample time of Ts driving a Gain block.

Because the Gain block’s output is simply the input multiplied by a constant, its output changes at the same rate as the filter. In other words, the Gain block has an effective sample rate equal to that of the filter’s sample rate. This is the fundamental mechanism behind sample time propagation in Simulink. Simulink sets sample times for individual blocks according to these rules: • Continuous blocks (e.g., Integrator, Derivative, Transfer Fcn, etc.) are, by definition, continuous. • The Constant block is, by definition, constant. • Discrete blocks (e.g., Zero-Order Hold, Unit Delay, Discrete Transfer Fcn, etc.) have sample times that are explicitly specified by the user on the block dialog boxes (see “Specifying Sample Time” on page 2-28). • All other blocks have implicitly defined sample times that are based on the sample times of their inputs. For instance, a Gain block that follows an Integrator is treated as a continuous block, whereas a Gain block that follows a Zero-Order Hold is treated as a discrete block having the same sample time as the Zero-Order Hold block. For blocks whose inputs have different sample times, if all sample times are integer multiples of the fastest sample time, the block is assigned the sample time of the fastest input. If a variable-step solver is being used, the block is

2-33

2

How Simulink Works

assigned the continuous sample time. If a fixed-step solver is being used and the greatest common divisor of the sample times (the fundamental sample time) can be computed, it is used. Otherwise continuous is used. Under some circumstances, Simulink also back propagates sample times to source blocks if it can do so without affecting the output of a simulation. For instance, in the model below, Simulink recognizes that the Signal Generator block is driving a Discrete-Time Integrator block, so it assigns the Signal Generator block and the Gain block the same sample time as the Discrete-Time Integrator block.

You can verify this by selecting Sample Time Colors from the Simulink Format menu and noting that all blocks are colored red. Because the Discrete-Time Integrator block only looks at its input at its sample times, this change does not affect the outcome of the simulation but does result in a performance improvement. Replacing the Discrete-Time Integrator block with a continuous Integrator block, as shown below, and recoloring the model by choosing Update diagram from the Edit menu cause the Signal Generator and Gain blocks to change to continuous blocks, as indicated by their being colored black.

Invariant Constants
Blocks either have explicitly defined sample times or inherit their sample times from blocks that feed them or are fed by them. Simulink assigns Constant blocks a sample time of infinity, also referred to as a constant sample time. Other blocks have constant sample time if they receive their input from a Constant block and do not inherit the sample time of another

2-34

Modeling and Simulating Discrete Systems

block. This means that the output of these blocks does not change during the simulation unless the parameters are explicitly modified by the model user. For example, in this model, both the Constant and Gain blocks have constant sample time.

Because Simulink supports the ability to change block parameters during a simulation, all blocks, even blocks having constant sample time, must generate their output at the model’s effective sample time.

Note You can determine which blocks have constant sample time by selecting Sample Time Colors from the Format menu. Blocks having constant sample time are colored magenta.

Because of this feature, all blocks compute their output at each sample time hit, or, in the case of purely continuous systems, at every simulation step. For blocks having constant sample time whose parameters do not change during a simulation, evaluating these blocks during the simulation is inefficient and slows down the simulation. You can set the inline parameters option (see “Inline parameters” on page 10-30) to remove all blocks having constant sample times from the simulation “loop.” The effect of this feature is twofold. First, parameters for these blocks cannot be changed during a simulation. Second, simulation speed is improved. The speed improvement depends on model complexity, the number of blocks with constant sample time, and the effective sampling rate of the simulation.

Mixed Continuous and Discrete Systems
Mixed continuous and discrete systems are composed of both sampled and continuous blocks. Such systems can be simulated using any of the integration methods, although certain methods are more efficient and accurate than others. For most mixed continuous and discrete systems, the Runge-Kutta variable-step methods, ode23 and ode45, are superior to the other methods in

2-35

2

How Simulink Works

terms of efficiency and accuracy. Because of discontinuities associated with the sample and hold of the discrete blocks, the ode15s and ode113 methods are not recommended for mixed continuous and discrete systems.

2-36

3
Simulink Basics
The following sections explain how to perform basic Simulink tasks. Starting Simulink (p. 3-2) Opening Models (p. 3-4) Entering Simulink Commands (p. 3-5) Simulink Windows (p. 3-7) Saving a Model (p. 3-9) Printing a Block Diagram (p. 3-12) Generating a Model Report (p. 3-16) Summary of Mouse and Keyboard Actions (p. 3-19) Ending a Simulink Session (p. 3-22) How to start Simulink. How to open a Simulink model. Explains various ways to execute Simulink commands. Guide to the features of the windows used to display Simulink models and block libraries. How to save a Simulink model to disk. How to print a Simulink block diagram. How to generate an HTML report on a model’s structure and content. Lists key combinations and mouse actions that you can use to execute Simulink commands. How to end a Simulink session.

3

Simulink Basics

Starting Simulink
To start Simulink, you must first start MATLAB. Consult your MATLAB documentation for more information. You can then start Simulink in two ways: • Click the Simulink icon on the MATLAB toolbar.

• Enter the simulink command at the MATLAB prompt. On Microsoft Windows platforms, starting Simulink displays the Simulink Library Browser.

The Library Browser displays a tree-structured view of the Simulink block libraries installed on your system. You can build models by copying blocks from the Library Browser into a model window (this procedure is described later in this chapter).

3-2

Starting Simulink

On Macintosh or Linux platforms, starting Simulink displays the Simulink block library window.

The Simulink library window displays icons representing the block libraries that come with Simulink. You can create models by copying blocks from the library into a model window.

Note On Windows, you can display the Simulink library window by right-clicking the Simulink node in the Library Browser window.

3-3

3

Simulink Basics

Opening Models
To edit an existing model diagram, either • Click the Open button on the Library Browser’s toolbar (Windows only) or select Open from the Simulink library window’s File menu and then choose or enter the file name for the model to edit. • Enter the name of the model (without the .mdl extension) in the MATLAB Command Window. The model must be in the current directory or on the path.

3-4

Entering Simulink Commands

Entering Simulink Commands
You run Simulink and work with your model by entering commands. You can enter commands by • Selecting items from the Simulink menu bar • Selecting items from a context-sensitive Simulink menu (Windows only) • Clicking buttons on the Simulink toolbar (Windows only) • Entering commands in the MATLAB Command Window

Using the Simulink Menu Bar to Enter Commands
The Simulink menu bar appears near the top of each model window. The menu commands apply to the contents of that window.

Using Context-Sensitive Menus to Enter Commands
Simulink displays a context-sensitive menu when you click the right mouse button over a model or block library window. The contents of the menu depend on whether a block is selected. If a block is selected, the menu displays commands that apply only to the selected block. If no block is selected, the menu displays commands that apply to a model or library as a whole.

Using the Simulink Toolbar to Enter Commands
Model windows in the Windows version of Simulink optionally display a toolbar beneath the Simulink menu bar. To display the toolbar, select the Toolbar option on the Simulink View menu.

Toolbar

3-5

3

Simulink Basics

The toolbar contains buttons corresponding to frequently used Simulink commands, such as those for opening, running, and closing models. You can run such commands by clicking the corresponding button. For example, to open a Simulink model, click the button containing the open folder icon. You can determine which command a button executes by moving the mouse pointer over the button. A small window appears containing text that describes the button. The window is called a tooltip. Each button on the toolbar displays a tooltip when the mouse pointer hovers over it. You can hide the toolbar by clearing the Toolbar option on the Simulink View menu.

Using the MATLAB Window to Enter Commands
When you run a simulation and analyze its results, you can enter MATLAB commands in the MATLAB Command Window. See Chapter 10, “Running a Simulation,” and Chapter 11, “Analyzing Simulation Results,” for more information.

Undoing a Command
You can cancel the effects of up to 101 consecutive operations by choosing Undo from the Edit menu. You can undo these operations: • Adding, deleting, or moving a block • Adding, deleting, or moving a line • Adding, deleting, or moving a model annotation • Editing a block name • Creating a subsystem (see “Undoing Subsystem Creation” on page 4-22 for more information) You can reverse the effects of an Undo command by choosing Redo from the Edit menu.

3-6

Simulink Windows

Simulink Windows
Simulink uses separate windows to display a block library browser, a block library, a model, and graphical (scope) simulation output. These windows are not MATLAB figure windows and cannot be manipulated using Handle Graphics® commands. Simulink windows are sized to accommodate the most common screen resolutions available. If you have a monitor with exceptionally high or low resolution, you might find the window sizes too small or too large. If this is the case, resize the window and save the model to preserve the new window dimensions.

Status Bar
The Windows version of Simulink displays a status bar at the bottom of each model and library window.

Status Bar

When a simulation is running, the status bar displays the status of the simulation, including the current simulation time and the name of the current solver. You can display or hide the status bar by selecting or clearing the Status Bar option on the Simulink View menu.

Zooming Block Diagrams
Simulink allows you to enlarge or shrink the view of the block diagram in the current Simulink window. To zoom a view: • Select Zoom In from the View menu (or type r) to enlarge the view. • Select Zoom Out from the View menu (or type v) to shrink the view.

3-7

3

Simulink Basics

• Select Fit System to View from the View menu (or press the space bar) to fit the diagram to the view. • Select Normal from the View menu to view the diagram at actual size. By default, Simulink fits a block diagram to view when you open the diagram either in the model browser’s content pane or in a separate window. If you change a diagram’s zoom setting, Simulink saves the setting when you close the diagram and restores the setting the next time you open the diagram. If you want to restore the default behavior, choose Fit System to View from the View menu the next time you open the diagram.

3-8

Saving a Model

Saving a Model
You can save a model by choosing either the Save or Save As command from the File menu. Simulink saves the model by generating a specially formatted file called the model file (with the .mdl extension) that contains the block diagram and block properties. If you are saving a model for the first time, use the Save command to provide a name and location for the model file. Model file names must start with a letter and can contain no more than 63 letters, numbers, and underscores. The file name must not be the same as that of a MATLAB command. If you are saving a model whose model file was previously saved, use the Save command to replace the file’s contents or the Save As command to save the model with a new name or location. You can also use the Save As command to save the model in a format compatible with previous releases of Simulink (see “Saving a Model in Earlier Formats” on page 3-9). Simulink follows this procedure while saving a model:
1 If the mdl file for the model already exists, it is renamed as a temporary file. 2 Simulink executes all block PreSaveFcn callback routines, then executes the

block diagram’s PreSaveFcn callback routine.
3 Simulink writes the model file to a new file using the same name and an

extension of mdl.
4 Simulink executes all block PostSaveFcn callback routines, then executes

the block diagram’s PostSaveFcn callback routine.
5 Simulink deletes the temporary file.

If an error occurs during this process, Simulink renames the temporary file to the name of the original model file, writes the current version of the model to a file with an .err extension, and issues an error message. Simulink performs steps 2 through 4 even if an error occurs in an earlier step.

Saving a Model in Earlier Formats
The Save As command allows you to save a model created with the latest version of Simulink in formats used by earlier versions of Simulink, including

3-9

3

Simulink Basics

Simulink 3 (Release 11), Simulink 4 (Release 12), and Simulink 4.1 (Release 12.1). You might want to do this, for example, if you need to make a model available to colleagues who have access only to one of these earlier versions of Simulink. To save a model in earlier format:
1 Select Save As from the Simulink File menu.

Simulink displays the Save As dialog box.

2 Select a format from the Save as type list on the dialog box. 3 Click the Save button.

When saving a model in an earlier version’s format, Simulink saves the model in that format regardless of whether the model contains blocks and features that were introduced after that version. If the model does contain blocks or use features that postdate the earlier version, the model might not give correct results when run by the earlier version. For example, matrix and frame signals do not work in Release 11, because Release 11 does not have matrix and frame support. Similarly, models that contain unconditionally executed subsystems marked “Treat as atomic unit” might produce different results in Release 11, because Release 11 does not support unconditionally executed atomic subsystems.

3-10

Saving a Model

The command converts blocks that postdate the earlier version into empty masked subsystem blocks colored yellow. For example, post-Release 11 blocks include • Look-Up Table (n-D) • Assertion • Rate Transition • PreLook-Up Index Search • Interpolation (n-D) • Direct Look-Up Table (n-D) • Polynomial • Matrix Concatenation • Signal Specification • Bus Creator • If, WhileIterator, ForIterator, Assignment • SwitchCase • Bitwise Logical Operator Post-Release 11 blocks from Simulink blocksets appear as unlinked blocks.

3-11

3

Simulink Basics

Printing a Block Diagram
You can print a block diagram by selecting Print from the File menu (on a Microsoft Windows system) or by using the print command in the MATLAB Command Window (on all platforms). On a Microsoft Windows system, the Print menu item prints the block diagram in the current window.

Print Dialog Box
When you select the Print menu item, the Print dialog box appears. The Print dialog box enables you to selectively print systems within your model. Using the dialog box, you can print • The current system only • The current system and all systems above it in the model hierarchy • The current system and all systems below it in the model hierarchy, with the option of looking into the contents of masked and library blocks • All systems in the model, with the option of looking into the contents of masked and library blocks • An overlay frame on each diagram The portion of the Print dialog box that supports selective printing is similar on supported platforms. This figure shows how it looks on a Microsoft Windows system. In this figure, only the current system is to be printed.

3-12

Printing a Block Diagram

When you select either the Current system and below or All systems option, two check boxes become enabled. In this figure, All systems is selected.

Selecting the Look Under Mask Dialog check box prints the contents of masked subsystems when encountered at or below the level of the current block. When you are printing all systems, the top-level system is considered the current block, so Simulink looks under any masked blocks encountered. Selecting the Expand Unique Library Links check box prints the contents of library blocks when those blocks are systems. Only one copy is printed regardless of how many copies of the block are contained in the model. For more information about libraries, see “Working with Block Libraries” on page 5-28. The print log lists the blocks and systems printed. To print the print log, select the Include Print Log check box. Selecting the Frame check box prints a title block frame on each diagram. Enter the path to the title block frame in the adjacent edit box. You can create a customized title block frame, using the MATLAB frame editor. See frameedit in the online MATLAB reference for information on using the frame editor to create title block frames.

Print Command
The format of the print command is
print -ssys -device filename

3-13

3

Simulink Basics

sys is the name of the system to be printed. The system name must be preceded by the s switch identifier and is the only required argument. sys must be open

or must have been open during the current session. If the system name contains spaces or takes more than one line, you need to specify the name as a string. See the examples below.
device specifies a device type. For a list and description of device types, see the documentation for the MATLAB print function. filename is the PostScript file to which the output is saved. If filename exists, it is replaced. If filename does not include an extension, an appropriate one is appended.

For example, this command prints a system named untitled.
print -suntitled

This command prints the contents of a subsystem named Sub1 in the current system.
print -sSub1

This command prints the contents of a subsystem named Requisite Friction.
print (['-sRequisite Friction'])

The next example prints a system named Friction Model, a subsystem whose name appears on two lines. The first command assigns the newline character to a variable; the second prints the system.
cr = sprintf('\n'); print (['-sFriction' cr 'Model'])

To print the currently selected subsystem, enter
print(['-s', gcb])

Specifying Paper Size and Orientation
Simulink lets you specify the type and orientation of the paper used to print a model diagram. You can do this on all platforms by setting the model’s PaperType and PaperOrientation properties, respectively (see “Model and Block Parameters” in the online documentation), using the set_param command. You can set the paper orientation alone, using the MATLAB orient

3-14

Printing a Block Diagram

command. On Windows, the Print and Printer Setup dialog boxes let you set the page type and orientation properties as well.

Positioning and Sizing a Diagram
You can use a model’s PaperPositionMode and PaperPosition parameters to position and size the model’s diagram on the printed page. The value of the PaperPosition parameter is a vector of form [left bottom width height]. The first two elements specify the bottom left corner of a rectangular area on the page, measured from the page’s bottom left corner. The last two elements specify the width and height of the rectangle. When the model’s PaperPositionMode is manual, Simulink positions (and scales, if necessary) the model’s diagram to fit inside the specified print rectangle. For example, the following commands
vdp set_param('vdp', set_param('vdp', set_param('vdp', set_param('vdp', print -svdp 'PaperType', 'usletter') 'PaperOrientation', 'landscape') 'PaperPositionMode', 'manual') 'PaperPosition', [0.5 0.5 4 4])

print the block diagram of the vdp sample model in the lower left corner of a U.S. letter-size page in landscape orientation. If PaperPositionMode is auto, Simulink centers the model diagram on the printed page, scaling the diagram, if necessary, to fit the page.

3-15

3

Simulink Basics

Generating a Model Report
A Simulink model report is an HTML document that describes a model’s structure and content. The report includes block diagrams of the model and its subsystems and the settings of its block parameters. To generate a report for the current model:
1 Select Print details from the model’s File menu.

The Print Details dialog box appears.

The dialog box allows you to select various report options (see “Model Report Options” on page 3-17).
2 Select the desired report options on the dialog box. 3 Select Print.

Simulink generates the HTML report and displays the in your system’s default HTML browser.

3-16

Generating a Model Report

While generating the report, Simulink displays status messages on a messages pane that replaces the options pane on the Print Details dialog box.

You can select the detail level of the messages from the list at the top of the messages pane. When the report generation process begins, the Print button on the Print Details dialog box changes to a Stop button. Clicking this button terminates the report generation. When the report generation process finishes, the Stop button changes to an Options button. Clicking this button redisplays the report generation options, allowing you to generate another report without having to reopen the Print Details dialog box.

Model Report Options
The Print Details dialog box allows you to select the following report options.

Directory
The directory where Simulink stores the HTML report that it generates. The options include your system’s temporary directory (the default), your system’s current directory, or another directory whose path you specify in the adjacent edit field.

Increment filename to prevent overwriting old files
Creates a unique report file name each time you generate a report for the same model in the current session. This preserves each report.

3-17

3

Simulink Basics

Current object
Include only the currently selected object in the report.

Current and above
Include the current object and all levels of the model above the current object in the report.

Current and below
Include the current object and all levels below the current object in the report.

Entire model
Include the entire model in the report.

Look under mask dialog
Include the contents of masked subsystems in the report.

Expand unique library links
Include the contents of library blocks that are subsystems. The report includes a library subsystem only once even if it occurs in more than one place in the model.

3-18

Summary of Mouse and Keyboard Actions

Summary of Mouse and Keyboard Actions
These tables summarize the use of the mouse and keyboard to manipulate blocks, lines, and signal labels. LMB means press the left mouse button; CMB, the center mouse button; and RMB, the right mouse button.

Manipulating Blocks
The following table lists mouse and keyboard actions that apply to blocks.
Task Microsoft Windows Macintosh or Linux

Select one block Select multiple blocks Copy block from another window Move block Duplicate block Connect blocks Disconnect block Open selected subsystem Go to parent of selected subsystem

LMB
Shift + LMB

LMB
Shift + LMB; or CMB

alone Drag block Drag block
Ctrl + LMB and drag; or RMB and drag

Drag block Drag block
Ctrl + LMB and drag; or RMB and drag

LMB
Shift + drag block Enter Esc

LMB
Shift + drag block; or

CMB and drag
Return Esc

3-19

3

Simulink Basics

Manipulating Lines
The following table lists mouse and keyboard actions that apply to lines.
Task Microsoft Windows Macintosh or Linux

Select one line Select multiple lines Draw branch line Route lines around blocks Move line segment Move vertex Create line segments

LMB
Shift + LMB Ctrl + drag line; or RMB and drag line Shift + draw line segments

LMB
Shift + LMB; or CMB

alone
Ctrl + drag line; or RMB + drag line Shift + draw line segments; or CMB and draw segments

Drag segment Drag vertex
Shift + drag line

Drag segment Drag vertex
Shift + drag line; or CMB + drag line

Manipulating Signal Labels
The next table lists mouse and keyboard actions that apply to signal labels.
Action Microsoft Windows Macintosh or Linux

Create signal label Copy signal label Move signal label Edit signal label Delete signal label

Double-click line, then enter label
Ctrl + drag label

Double-click line, then enter label
Ctrl + drag label

Drag label Click in label, then edit
Shift + click label, then press Delete

Drag label Click in label, then edit
Shift + click label, then press Delete

3-20

Summary of Mouse and Keyboard Actions

Manipulating Annotations
The next table lists mouse and keyboard actions that apply to annotations.
Action Microsoft Windows Macintosh or Linux

Create annotation

Double-click in diagram, then enter text
Ctrl + drag label

Double-click in diagram, then enter text
Ctrl + drag label

Copy annotation Move annotation Edit annotation Delete annotation

Drag label Click in text, then edit
Shift + select

Drag label Click in text, then edit
Shift + select

annotation, then press Delete

annotation, then press
Delete

3-21

3

Simulink Basics

Ending a Simulink Session
Terminate a Simulink session by closing all Simulink windows. Terminate a MATLAB session by choosing one of these commands from the File menu: • On a Microsoft Windows system: Exit MATLAB • On a Macintosh or Linux system: Quit MATLAB

3-22

4
Creating a Model
The following sections explain how to create Simulink models of dynamic systems. Creating a New Model (p. 4-2) Selecting Objects (p. 4-3) Specifying Block Diagram Colors (p. 4-5) Connecting Blocks (p. 4-9) Annotating Diagrams (p. 4-16) Creating Subsystems (p. 4-20) Creating Conditionally Executed Subsystems (p. 4-26) Model Discretizer (p. 4-49) Using Callback Routines (p. 4-71) Managing Model Versions (p. 4-77) How to create a new model. How to select objects in a model. How to specify the colors of blocks, lines, and annotations and the background of the diagram. How to draw connections between blocks. How to add annotations to a block diagram. How to create subsystems. How to create subsystems that are executed only when specified events occur or conditions are satisfied. How to create a discrete model from a continuous model. How to use callback routines to customize a model. How to use version control systems to manage and track development of Simulink models.

4

Creating a Model

Creating a New Model
To create a new model, click the New button on the Library Browser’s toolbar (Windows only) or choose New from the library window’s File menu and select Model. You can move the window as you do other windows. Chapter 1, “Quick Start” describes how to build a simple model. “Modeling Equations” on page 8-2 describes how to build systems that model equations.

4-2

Selecting Objects

Selecting Objects
Many model building actions, such as copying a block or deleting a line, require that you first select one or more blocks and lines (objects).

Selecting One Object
To select an object, click it. Small black square “handles” appear at the corners of a selected block and near the end points of a selected line. For example, the figure below shows a selected Sine Wave block and a selected line.

When you select an object by clicking it, any other selected objects are deselected.

Selecting More Than One Object
You can select more than one object either by selecting objects one at a time, by selecting objects located near each other using a bounding box, or by selecting the entire model.

Selecting Multiple Objects One at a Time
To select more than one object by selecting each object individually, hold down the Shift key and click each object to be selected. To deselect a selected object, click the object again while holding down the Shift key.

Selecting Multiple Objects Using a Bounding Box
An easy way to select more than one object in the same area of the window is to draw a bounding box around the objects:
1 Define the starting corner of a bounding box by positioning the pointer at

one corner of the box, then pressing and holding down the mouse button. Notice the shape of the cursor.

4-3

4

Creating a Model

2 Drag the pointer to the opposite corner of the box. A dotted rectangle

encloses the selected blocks and lines.

3 Release the mouse button. All blocks and lines at least partially enclosed by

the bounding box are selected.

Selecting the Entire Model
To select all objects in the active window, choose Select All from the Edit menu. You cannot create a subsystem by selecting blocks and lines in this way. For more information, see “Creating Subsystems” on page 4-20.

4-4

Specifying Block Diagram Colors

Specifying Block Diagram Colors
Simulink allows you to specify the foreground and background colors of any block or annotation in a diagram, as well as the diagram’s background color. To set the background color of a block diagram, select Screen color from the Simulink Format menu. To set the background color of a block or annotation or group of such items, first select the item or items. Then select Background color from the Simulink Format menu. To set the foreground color of a block or annotation, first select the item. Then select Foreground color from the Simulink Format menu. In all cases, Simulink displays a menu of color choices. Choose the desired color from the menu. If you select a color other than Custom, Simulink changes the background or foreground color of the diagram or diagram element to the selected color.

Choosing a Custom Color
If you choose Custom, Simulink displays the Simulink Choose Custom Color dialog box.

The dialog box displays a palette of basic colors and a palette of custom colors that you previously defined. If you have not previously created any custom colors, the custom color palette is all white. To choose a color from either palette, click the color, and then click the OK button.

4-5

4

Creating a Model

Defining a Custom Color
To define a custom color, click the Define Custom Colors button on the Choose Custom Color dialog box. The dialog box expands to display a custom color definer.

Hue-saturation cursor

Luminescence cursor

The color definer allows you to specify a custom color by • Entering the red, green, and blue components of the color as values between 0 (darkest) and 255 (brightest) • Entering hue, saturation, and luminescence components of the color as values in the range 0 to 255 • Moving the hue-saturation cursor to select the hue and saturation of the desired color and the luminescence cursor to select the luminescence of the desired color The color that you have defined in any of these ways appears in the
Color|Solid box. To redefine a color in the Custom colors palette, select the color and define a new color, using the color definer. Then click the Add to Custom Colors button on the color definer.

Specifying Colors Programmatically
You can use the set_param command at the MATLAB command line or in an M-file program to set parameters that determine the background color of a diagram and the background color and foreground color of diagram elements.

4-6

Specifying Block Diagram Colors

The following table summarizes the parameters that control block diagram colors.
Parameter ScreenColor BackgroundColor ForegroundColor Determines

Background color of block diagram Background color of blocks and annotations Foreground color of blocks and annotations

You can set these parameters to any of the following values: • 'black', 'white', 'red', 'green', 'blue', 'cyan', 'magenta', 'yellow', 'gray', 'lightBlue', 'orange', 'darkGreen' • '[r,g,b]' where r, g, and b are the red, green, and blue components of the color normalized to the range 0.0 to 1.0. For example, the following command sets the background color of the currently selected system or subsystem to a light green color:
set_param(gcs, 'ScreenColor', '[0.3, 0.9, 0.5]')

Enabling Sample Time Colors
Simulink can color code the blocks and lines in your model to indicate the sample rates at which the blocks operate.
Color Use

Black Magenta Yellow Red Green

Continuous blocks Constant blocks Hybrid (subsystems grouping blocks, or Mux or Demux blocks grouping signals with varying sample times) Fastest discrete sample time Second fastest discrete sample time

4-7

4

Creating a Model

Color

Use

Blue Light Blue Dark Green Orange Cyan Gray

Third fastest discrete sample time Fourth fastest discrete sample time Fifth fastest discrete sample time Sixth fastest discrete sample time Blocks in triggered subsystems Fixed in minor step

To enable the sample time colors feature, select Sample Time Colors from the Format menu. Simulink does not automatically recolor the model with each change you make to it, so you must select Update Diagram from the Edit menu to explicitly update the model coloration. To return to your original coloring, disable sample time coloration by again choosing Sample Time Colors. When you use sample time colors, the color assigned to each block depends on its sample time with respect to other sample times in the model. It is important to note that Mux and Demux blocks are simply grouping operators; signals passing through them retain their timing information. For this reason, the lines emanating from a Demux block can have different colors if they are driven by sources having different sample times. In this case, the Mux and Demux blocks are color coded as hybrids (yellow) to indicate that they handle signals with multiple rates. Similarly, Subsystem blocks that contain blocks with differing sample times are also colored as hybrids, because there is no single rate associated with them. If all the blocks within a subsystem run at a single rate, the Subsystem block is colored according to that rate.

4-8

Connecting Blocks

Connecting Blocks
Simulink block diagrams use lines to represent pathways for signals among blocks in a model (see “Annotating Diagrams” on page 4-16 for information on signals). Simulink can connect blocks for you or you can connect the blocks yourself by drawing lines from their output ports to their input ports.

Automatically Connecting Blocks
You can command Simulink to connect blocks automatically. This eliminates the need for you to draw the connecting lines yourself. When connecting blocks, Simulink routes lines around intervening blocks to avoid cluttering the diagram.

Connecting Two Blocks
To autoconnect two blocks:
1 Select the source block.

2 Hold down Ctrl and left-click the destination block.

Simulink connects the source block to the destination block, routing the line around intervening blocks if necessary.

4-9

4

Creating a Model

When connecting two blocks, Simulink draws as many connections as possible between the two blocks as illustrated in the following example.

Before autoconnect

After autoconnect

Connecting Groups of Blocks
Simulink can connect a group of source blocks to a destination block or a source block to a group of destination blocks. To connect a group of source blocks to a destination block:
1 Select the source blocks.

2 Hold down Ctrl and left-click the destination block.

To connect a source block to a group of destination blocks:
1 Select the destination blocks.

4-10

Connecting Blocks

2 Hold down Ctrl and left-click the source block.

Manually Connecting Blocks
Simulink allows you to draw lines manually between blocks or between lines and blocks. You might want to do this if you need to control the path of the line or to create a branch line.

Drawing a Line Between Blocks
To connect the output port of one block to the input port of another block:
1 Position the cursor over the first block’s output port. It is not necessary to

position the cursor precisely on the port. The cursor shape changes to crosshairs.

2 Press and hold down the mouse button. 3 Drag the pointer to the second block’s input port. You can position the cursor

on or near the port or in the block. If you position the cursor in the block, the line is connected to the closest input port. The cursor shape changes to double crosshairs.

4 Release the mouse button. Simulink replaces the port symbols by a

connecting line with an arrow showing the direction of the signal flow. You can create lines either from output to input, or from input to output. The arrow is drawn at the appropriate input port, and the signal is the same.

4-11

4

Creating a Model

Simulink draws connecting lines using horizontal and vertical line segments. To draw a diagonal line, hold down the Shift key while drawing the line.

Drawing a Branch Line
A branch line is a line that starts from an existing line and carries its signal to the input port of a block. Both the existing line and the branch line carry the same signal. Using branch lines enables you to cause one signal to be carried to more than one block. In this example, the output of the Product block goes to both the Scope block and the To Workspace block.

To add a branch line, follow these steps:
1 Position the pointer on the line where you want the branch line to start. 2 While holding down the Ctrl key, press and hold down the left mouse button. 3 Drag the pointer to the input port of the target block, then release the mouse

button and the Ctrl key. You can also use the right mouse button instead of holding down the left mouse button and the Ctrl key.

Drawing a Line Segment
You might want to draw a line with segments exactly where you want them instead of where Simulink draws them. Or you might want to draw a line before you copy the block to which the line is connected. You can do either by drawing line segments.

4-12

Connecting Blocks

To draw a line segment, you draw a line that ends in an unoccupied area of the diagram. An arrow appears on the unconnected end of the line. To add another line segment, position the cursor over the end of the segment and draw another segment. Simulink draws the segments as horizontal and vertical lines. To draw diagonal line segments, hold down the Shift key while you draw the lines.

Moving a Line Segment
To move a line segment, follow these steps:
1 Position the pointer on the segment you want to move.

2 Press and hold down the left mouse button.

3 Drag the pointer to the desired location.

4 Release the mouse button.

4-13

4

Creating a Model

To move the segment connected to an input port, position the pointer over the port and drag the end of the segment to the new location. You cannot move the segment connected to an output port.

Moving a Line Vertex
To move a vertex of a line, follow these steps:
1 Position the pointer on the vertex, then press and hold down the mouse

button. The cursor changes to a circle that encloses the vertex.

2 Drag the pointer to the desired location.

3 Release the mouse button.

Inserting Blocks in a Line
You can insert a block in a line by dropping the block on the line. Simulink inserts the block for you at the point where you drop the block. The block that you insert can have only one input and one output.

4-14

Connecting Blocks

To insert a block in a line:
1 Position the pointer over the block and press the left mouse button.

2 Drag the block over the line in which you want to insert the block.

3 Release the mouse button to drop the block on the line. Simulink inserts the

block where you dropped it.

Disconnecting Blocks
To disconnect a block from its connecting lines, hold down the Shift key, then drag the block to a new location.

4-15

4

Creating a Model

Annotating Diagrams
Annotations provide textual information about a model. You can add an annotation to any unoccupied area of your block diagram.

Annotations

To create a model annotation, double-click an unoccupied area of the block diagram. A small rectangle appears and the cursor changes to an insertion point. Start typing the annotation contents. Each line is centered within the rectangle that surrounds the annotation. To move an annotation, drag it to a new location. To edit an annotation, select it: • To replace the annotation, click the annotation, then double-click or drag the cursor to select it. Then, enter the new annotation. • To insert characters, click between two characters to position the insertion point, then insert text. • To replace characters, drag the mouse to select a range of text to replace, then enter the new text. To delete an annotation, hold down the Shift key while you select the annotation, then press the Delete or Backspace key. To change the font of all or part of an annotation, select the text in the annotation you want to change, then choose Font from the Format menu. Select a font and size from the dialog box. To change the text alignment (e.g., left, center, or right) of the annotation, select the annotation and choose Text Alignment from the model window’s

4-16

Annotating Diagrams

Format or context menu. Then choose one of the alignment options (e.g., Center) from the Text Alignment submenu.

Using TeX Formatting Commands in Annotations
You can use TeX formatting commands to include mathematical and other symbols and Greek letters in block diagram annotations.

To use TeX commands in an annotation:
1 Select the annotation. 2 Select Enable TeX Commands from the Edit menu on the model window.

4-17

4

Creating a Model

3 Enter or edit the text of the annotation, using TeX commands where needed

to achieve the desired appearance.

See “Mathematical Symbols, Greek Letters, and TeX Characters” in the MATLAB documentation for information on the TeX formatting commands supported by Simulink.
4 Deselect the annotation by clicking outside it or typing Esc.

Simulink displays the formatted text.

Creating Annotations Programmatically
You can use Simulink’s add_block command to create annotations at the command line or in an M-file program. Use the following syntax to create the annotation:
add_block('built-in/Note','path/text','Position', [center_x, 0, 0, center_y]);

where path is the path of the diagram to be annotated, text is the text of the annotation, and [center_x, 0, 0, center_y] is the position of the center of the annotation in pixels releative to the upper left corner of the diagram. For example, the following sequence of commands
new_system('test') open_system('test')

4-18

Annotating Diagrams

add_block('built-in/Gain', 'test/Gain', 'Position', [260, 125, 290, 155]) add_block('built-in/Note','test/programmatically created', 'Position', [550 0 0 180])

creates the following model:

4-19

4

Creating a Model

Creating Subsystems
As your model increases in size and complexity, you can simplify it by grouping blocks into subsystems. Using subsystems has these advantages: • It helps reduce the number of blocks displayed in your model window. • It allows you to keep functionally related blocks together. • It enables you to establish a hierarchical block diagram, where a Subsystem block is on one layer and the blocks that make up the subsystem are on another. You can create a subsystem in two ways: • Add a Subsystem block to your model, then open that block and add the blocks it contains to the subsystem window. • Add the blocks that make up the subsystem, then group those blocks into a subsystem.

Creating a Subsystem by Adding the Subsystem Block
To create a subsystem before adding the blocks it contains, add a Subsystem block to the model, then add the blocks that make up the subsystem:
1 Copy the Subsystem block from the Signals & Systems library into your

model.
2 Open the Subsystem block by double-clicking it.

Simulink opens the subsystem in the current or a new model window, depending on the model window reuse mode that you selected (see “Window Reuse” on page 4-23).

4-20

Creating Subsystems

3 In the empty Subsystem window, create the subsystem. Use Inport blocks to

represent input from outside the subsystem and Outport blocks to represent external output. For example, the subsystem shown includes a Sum block and Inport and Outport blocks to represent input to and output from the subsystem.

Creating a Subsystem by Grouping Existing Blocks
If your model already contains the blocks you want to convert to a subsystem, you can create the subsystem by grouping those blocks:
1 Enclose the blocks and connecting lines that you want to include in the

subsystem within a bounding box. You cannot specify the blocks to be grouped by selecting them individually or by using the Select All command. For more information, see “Selecting Multiple Objects Using a Bounding Box” on page 4-3. For example, this figure shows a model that represents a counter. The Sum and Unit Delay blocks are selected within a bounding box.

When you release the mouse button, the two blocks and all the connecting lines are selected.

4-21

4

Creating a Model

2 Choose Create Subsystem from the Edit menu. Simulink replaces the

selected blocks with a Subsystem block. This figure shows the model after you choose the Create Subsystem command (and resize the Subsystem block so the port labels are readable).

If you open the Subsystem block, Simulink displays the underlying system, as shown below. Notice that Simulink adds Inport and Outport blocks to represent input from and output to blocks outside the subsystem.

As with all blocks, you can change the name of the Subsystem block. You can also customize the icon and dialog box for the block using the masking feature, described in Chapter 12, “Creating Masked Subsystems.”

Undoing Subsystem Creation
To undo creation of a subsystem by grouping blocks, select Undo from the Edit menu. You can undo creation of a subsystem that you have subsequently edited. However, the Undo command does not undo any nongraphical changes that you made to the blocks, such as changing the value of a block parameter or the name of a block. Simulink alerts you to this limitation by displaying a warning dialog box before undoing creation of a modified subsystem.

4-22

Creating Subsystems

Model Navigation Commands
Subsystems allow you to create a hierarchical model comprising many layers. You can navigate this hierarchy, using the Simulink Model Browser (see “The Model Browser” on page 9-8) and/or the following model navigation commands: • Open The Open command opens the currently selected subsystem. To execute the command, choose Open from the Simulink Edit menu, press Enter, or double-click the subsystem. • Open block in new window Opens the currently selected subsystem regardless of Simulink’s window reuse settings (see “Window Reuse” on page 4-23). • Go to Parent The Go to Parent command displays the parent of the subsystem displayed in the current window. To execute the command, press Esc or select Go to Parent from the Simulink View menu.

Window Reuse
You can specify whether Simulink’s model navigation commands use the current window or a new window to display a subsystem or its parent. Reusing windows avoids cluttering your screen with windows. Creating a window for each subsystem allows you to view subsystems side by side with their parents or siblings. To specify your preference regarding window reuse, select Preferences from the Simulink File menu and then select one of the following Window reuse type options listed in the Simulink Preferences dialog box.
Reuse Type none

Open Action

Go to Parent (Esc) Action

Subsystem appears in a new window. Subsystem replaces the parent in the current window.

Parent window moves to the front. Parent window replaces subsystem in current window

reuse

4-23

4

Creating a Model

Reuse Type replace

Open Action

Go to Parent (Esc) Action

Subsystem appears in a new window. Parent window disappears. Subsystem appears in its own window.

Parent window appears. Subsystem window disappears. Parent window rises to front. Subsystem window disappears.

mixed

Labeling Subsystem Ports
Simulink labels ports on a Subsystem block. The labels are the names of Inport and Outport blocks that connect the subsystem to blocks outside the subsystem through these ports. You can hide (or show) the port labels by • Selecting the Subsystem block, then choosing Hide Port Labels (or Show Port Labels) from the Format menu • Selecting an Inport or Outport block in the subsystem and choosing Hide Name (or Show Name) from the Format menu • Selecting the Show port labels option in the Subsystem block’s parameter dialog This figure shows two models. The subsystem on the left contains two Inport blocks and one Outport block. The Subsystem block on the right shows the labeled ports.

Controlling Access to Subsystems
Simulink allows you to control user access to subsystems that reside in libraries. In particular, you can prevent a user from viewing or modifying the

4-24

Creating Subsystems

contents of a library subsystem while still allowing the user to employ the subsystem in a model. To control access to a library subsystem, open the subsystem’s parameter dialog box and set its Access parameter to either ReadOnly or NoReadOrWrite. The first option allows a user to view the contents of the library subsystem and make local copies but prevents the user from modifying the original library copy. The second option prevents the user from viewing the contents of, creating local copies, or modifying the permissions of the library subsystem. See the Subsystem block for more information on subsystem access options. Note that both options allow a user to use the library system in models by creating links (see “Working with Block Libraries” on page 5-28).

4-25

4

Creating a Model

Creating Conditionally Executed Subsystems
A conditionally executed subsystem is a subsystem whose execution depends on the value of an input signal. The signal that controls whether a subsystem executes is called the control signal. The signal enters the Subsystem block at the control input. Conditionally executed subsystems can be very useful when you are building complex models that contain components whose execution depends on other components. Simulink supports the following types of conditionally executed subsystems: • An enabled subsystem executes while the control signal is positive. It starts execution at the time step where the control signal crosses zero (from the negative to the positive direction) and continues execution while the control signal remains positive. Enabled subsystems are described in more detail in “Enabled Subsystems” on page 4-26. • A triggered subsystem executes once each time a trigger event occurs. A trigger event can occur on the rising or falling edge of a trigger signal, which can be continuous or discrete. Triggered subsystems are described in more detail in “Triggered Subsystems” on page 4-31. • A triggered and enabled subsystem executes once on the time step when a trigger event occurs if the enable control signal has a positive value at that step. See “Triggered and Enabled Subsystems” on page 4-35 for more information. • A control flow subsystem executes one or more times at the current time step when enabled by a control flow block that implements control logic similar to that expressed by programming language control flow statements (e.g., if-then, while, do, and for. See “Control Flow Blocks” on page 4-38 for more information.

Enabled Subsystems
Enabled subsystems are subsystems that execute at each simulation step where the control signal has a positive value. An enabled subsystem has a single control input, which can be scalar or vector valued:

4-26

Creating Conditionally Executed Subsystems

• If the input is a scalar, the subsystem executes if the input value is greater than zero. • If the input is a vector, the subsystem executes if any of the vector elements is greater than zero. For example, if the control input signal is a sine wave, the subsystem is alternately enabled and disabled, as shown in this figure. An up arrow signifies enable, a down arrow disable.

Simulink uses the zero-crossing slope method to determine whether an enable is to occur. If the signal crosses zero and the slope is positive, the subsystem is enabled. If the slope is negative at the zero crossing, the subsystem is disabled.

Creating an Enabled Subsystem
You create an enabled subsystem by copying an Enable block from the Signals & Systems library into a subsystem. Simulink adds an enable symbol and an enable control input port to the Subsystem block icon.

Setting Output Values While the Subsystem Is Disabled. Although an enabled subsystem does not execute while it is disabled, the output signal is still available to other blocks. While an enabled subsystem is disabled, you can choose to hold the subsystem outputs at their previous values or reset them to their initial conditions.

4-27

4

Creating a Model

Open each Outport block’s dialog box and select one of the choices for the Output when disabled parameter, as shown in the dialog box following: • Choose held to cause the output to maintain its most recent value. • Choose reset to cause the output to revert to its initial condition. Set the Initial output to the initial value of the output.

Select an option to set the Outport output while the subsystem is disabled. The initial condition and the value when reset.

Setting States When the Subsystem Becomes Reenabled. When an enabled subsystem executes, you can choose whether to hold the subsystem states at their previous values or reset them to their initial conditions.

To do this, open the Enable block dialog box and select one of the choices for the States when enabling parameter, as shown in the dialog box following: • Choose held to cause the states to maintain their most recent values. • Choose reset to cause the states to revert to their initial conditions.

Select an option to set the states when the subsystem is reenabled.

4-28

Creating Conditionally Executed Subsystems

Outputting the Enable Control Signal. An option on the Enable block dialog box lets you output the enable control signal. To output the control signal, select the Show output port check box.

This feature allows you to pass the control signal down into the enabled subsystem, which can be useful where logic within the enabled subsystem is dependent on the value or values contained in the control signal.

Blocks an Enabled Subsystem Can Contain
An enabled subsystem can contain any block, whether continuous or discrete. Discrete blocks in an enabled subsystem execute only when the subsystem executes, and only when their sample times are synchronized with the simulation sample time. Enabled subsystems and the model use a common clock.

Note Enabled subsystems can contain Goto blocks. However, only state ports can connect to Goto blocks in an enabled subsystem. See the Simulink demo model, clutch, for an example of how to use Goto blocks in an enabled subsystem.

For example, this system contains four discrete blocks and a control signal. The discrete blocks are • Block A, which has a sample time of 0.25 second • Block B, which has a sample time of 0.5 second • Block C, within the enabled subsystem, which has a sample time of 0.125 second • Block D, also within the enabled subsystem, which has a sample time of 0.25 second

4-29

4

Creating a Model

The enable control signal is generated by a Pulse Generator block, labeled Signal E, which changes from 0 to 1 at 0.375 second and returns to 0 at 0.875 second.

The chart below indicates when the discrete blocks execute.

1
Signal E Block D Block C Block B Block A 0 .125 .25 .375 .50 .625 .75 .875 1.0 0

-Start of execution
for a block

Time (sec)

Blocks A and B execute independently of the enable control signal because they are not part of the enabled subsystem. When the enable control signal becomes positive, blocks C and D execute at their assigned sample rates until the enable

4-30

Creating Conditionally Executed Subsystems

control signal becomes zero again. Note that block C does not execute at 0.875 second when the enable control signal changes to zero.

Triggered Subsystems
Triggered subsystems are subsystems that execute each time a trigger event occurs. A triggered subsystem has a single control input, called the trigger input, that determines whether the subsystem executes. You can choose from three types of trigger events to force a triggered subsystem to begin execution: • rising triggers execution of the subsystem when the control signal rises from a negative or zero value to a positive value (or zero if the initial value is negative). • falling triggers execution of the subsystem when the control signal falls from a positive or a zero value to a negative value (or zero if the initial value is positive). • either triggers execution of the subsystem when the signal is either rising or falling. Note In the case of discrete systems, a signal’s rising or falling from zero is considered a trigger event only if the signal has remained at zero for more than one time step preceding the rise or fall. This eliminates false triggers caused by control signal sampling.

4-31

4

Creating a Model

For example, in the following timing diagram for a discrete system, a rising trigger (R) does not occur at time step 3 because the signal has remained at zero for only one time step when the rise occurs.
0 1 2 3 4 5 6 7

0 F
Signal Level

Time

R

F

R

R

A simple example of a triggered subsystem is illustrated.

In this example, the subsystem is triggered on the rising edge of the square wave trigger control signal.

Creating a Triggered Subsystem
You create a triggered subsystem by copying the Trigger block from the Signals & Systems library into a subsystem. Simulink adds a trigger symbol and a trigger control input port to the Subsystem block icon.

4-32

Creating Conditionally Executed Subsystems

To select the trigger type, open the Trigger block dialog box and select one of the choices for the Trigger type parameter, as shown in the dialog box following:

Select the trigger type.

Simulink uses different symbols on the Trigger and Subsystem blocks to indicate rising and falling triggers (or either). This figure shows the trigger symbols on Subsystem blocks.

Outputs and States Between Trigger Events. Unlike enabled subsystems, triggered subsystems always hold their outputs at the last value between triggering events. Also, triggered subsystems cannot reset their states when triggered; states of any discrete blocks are held between trigger events.

4-33

4

Creating a Model

Outputting the Trigger Control Signal. An option on the Trigger block dialog box lets

you output the trigger control signal. To output the control signal, select the
Show output port check box.

Select this check box to show the output port.

The Output data type field allows you to specify the data type of the output signal as auto, int8, or double. The auto option causes the data type of the output signal to be set to the data type (either int8 or double) of the port to which the signal is connected.

Function-Call Subsystems
You can create a triggered subsystem whose execution is determined by logic internal to an S-function instead of by the value of a signal. These subsystems are called function-call subsystems. For more information about function-call subsystems, see “Function-Call Subsystems” in the “Implementing Block Features” section of Writing S-Functions.

Blocks That a Triggered Subsystem Can Contain
Triggered systems execute only at specific times during a simulation. As a result, the only blocks that are suitable for use in a triggered subsystem are • Blocks with inherited sample time, such as the Logical Operator block or the Gain block • Discrete blocks having their sample times set to -1, which indicates that the sample time is inherited from the driving block

4-34

Creating Conditionally Executed Subsystems

Triggered and Enabled Subsystems
A third kind of conditionally executed subsystem combines both types of conditional execution. The behavior of this type of subsystem, called a triggered and enabled subsystem, is a combination of the enabled subsystem and the triggered subsystem, as shown by this flow diagram.

Trggerevent i

I s t enabl he e i nputsi gnal >0?

No D on’ execut t subsyst t e he em

Yes Execut t subsyst e he em A triggered and enabled subsystem contains both an enable input port and a trigger input port. When the trigger event occurs, Simulink checks the enable input port to evaluate the enable control signal. If its value is greater than zero, Simulink executes the subsystem. If both inputs are vectors, the subsystem executes if at least one element of each vector is nonzero. The subsystem executes once at the time step at which the trigger event occurs.

Creating a Triggered and Enabled Subsystem
You create a triggered and enabled subsystem by dragging both the Enable and Trigger blocks from the Signals & Systems library into an existing subsystem. Simulink adds enable and trigger symbols and enable and trigger and enable control inputs to the Subsystem block icon.

4-35

4

Creating a Model

You can set output values when a triggered and enabled subsystem is disabled as you would for an enabled subsystem. For more information, see “Setting Output Values While the Subsystem Is Disabled” on page 4-27. Also, you can specify what the values of the states are when the subsystem is reenabled. See “Setting States When the Subsystem Becomes Reenabled” on page 4-28. Set the parameters for the Enable and Trigger blocks separately. The procedures are the same as those described for the individual blocks.

A Sample Triggered and Enabled Subsystem
A simple example of a triggered and enabled subsystem is illustrated in the model below.

Creating Alternately Executing Subsystems
You can use conditionally executed subsystems in combination with Merge blocks to create sets of subsystems that execute alternately, depending on the current state of the model. For example, the following figure shows a model that uses two enabled blocks and a Merge block to model an inverter, that is, a device that converts AC current to pulsating DC current.

4-36

Creating Conditionally Executed Subsystems

In this example, the block labeled “pos” is enabled when the AC waveform is positive; it passes the waveform unchanged to its output. The block labeled “neg” is enabled when the waveform is negative; it inverts the waveform. The Merge block passes the output of the currently enabled block to the Mux block, which passes the output, along with the original waveform, to the Scope block. The Scope creates the following display.

4-37

4

Creating a Model

Control Flow Blocks
The control flow blocks are used to implement the logic of the following C-like control flow statements in Simulink: • for • if-else • switch • while (includes while and do-while control flow statements) Although all the preceding control flow statements are implementable in Stateflow, these blocks are intended to provide Simulink users with tools that meet their needs for simpler logical requirements.

Creating Conditional Control Flow Statements
You create C-like conditional control flow statements using ordinary subsystems and the following blocks from the Subsystems library.
C Statement if-else switch Blocks Used

If, Action Port Switch Case, Action Port

If-Else Control Flow Statements. The following diagram depicts a generalized if-else control flow statement implementation in Simulink.

4-38

Creating Conditionally Executed Subsystems

Construct a Simulink if-else control flow statement as follows: • Provide data inputs to the If block for constructing if-else conditions. Inputs to the If block are set in the If block properties dialog. Internally, they are designated as u1, u2,..., un and are used to construct output conditions. • Set output port if-else conditions for the If block. Output ports for the If block are also set in its properties dialog. You use the input values u1, u2, ..., un to express conditions for the if, elseif, and else condition fields in the dialog. Of these, only the if field is required. You can enter multiple elseif conditions and select a check box to enable the else condition. • Connect each condition output port to an Action subsystem. Each if, elseif, and else condition output port on the If block is connected to a subsystem to be executed if the port’s case is true. You create these subsystems by placing an Action Port block in a subsystem. This creates an atomic Action subsystem with a port named Action, which you then connect to a condition on the If block. Once connected, the subsystem takes on the identity of the condition it is connected to and behaves like an enabled subsystem. For more detailed information, see the reference topics for the If and Action Port blocks.

Note All blocks in an Action subsystem driven by an If or Switch Case block must run at the same rate as the driving block.

4-39

4

Creating a Model

Switch Control Flow Statements. The following diagram depicts a generalized switch control flow statement implementation in Simulink.

Construct a Simulink switch control flow statement as follows: • Provide a data input to the argument input of the Switch Case block. The input to the Switch Case block is the argument to the switch control flow statement. This value determines the appropriate case to execute. Noninteger inputs to this port are truncated. • Add cases to the Switch Case block based on the numeric value of the argument input. You add cases to the Switch Case block through the properties dialog of the Switch Case block. Cases can be single or multivalued. You can also add an optional default case, which is true if no other cases are true. Once added, these cases appear as output ports on the Switch Case block. • Connect each Switch Case block case output port to an Action subsystem. Each case output of the Switch Case block is connected to a subsystem to be executed if the port’s case is true. You create these subsystems by placing an Action Port block in a subsystem. This creates an atomic subsystem with a port named Action, which you then connect to a condition on the Switch Case block. Once connected, the subsystem takes on the identity of the condition and behaves like an enabled subsystem. Place all the block programming executed for that case in this subsystem. For more detailed information, see the reference topics for the Switch Case and Action Port blocks.

4-40

Creating Conditionally Executed Subsystems

Note After the subsystem for a particular case is executed, an implied break is executed that exits the switch control flow statement altogether. Simulink switch control flow statement implementations do not exhibit “fall through” behavior like C switch statements.

Creating Iterator Control Flow Statements
You create C-like iterator control flow statements using subsystems and the following blocks from the Subsystems library.
C Statement do-while for while Blocks Used

While Iterator For Iterator While Iterator

While Control Flow Statements
The following diagram depicts a generalized C-like while control flow statement implementation in Simulink.

In a Simulink while control flow statement, the While Iterator block iterates the contents of a While subsystem, an atomic subsystem. For each iteration of

4-41

4

Creating a Model

the While Iterator block, the block programming of the While subsystem executes one complete path through its blocks. Construct a Simulink while control flow statement as follows: • Place a While Iterator block in a subsystem. The host subsystem becomes a while control flow statement as indicated by its new label, while {...}. These subsystems behave like triggered subsystems. This subsystem is host to the block programming you want to iterate with the While Iterator block. • Provide a data input for the initial condition data input port of the While Iterator block. The While Iterator block requires an initial condition data input (labeled IC) for its first iteration. This must originate outside the While subsystem. If this value is nonzero, the first iteration takes place. • Provide data input for the conditions port of the While Iterator block. Conditions for the remaining iterations are passed to the data input port labeled cond. Input for this port must originate inside the While subsystem. • You can set the While Iterator block to output its iterator value through its properties dialog. The iterator value is 1 for the first iteration and is incremented by 1 for each succeeding iteration. • You can change the iteration of the While Iterator block to do-while through its properties dialog. This changes the label of the host subsystem to do {...} while. With a do-while iteration, the While Iteration block no longer has an initial condition (IC) port, because all blocks in the subsystem are executed once before the condition port (labeled cond) is checked. For specific details, see the reference topic for the While Iterator block.

4-42

Creating Conditionally Executed Subsystems

For Control Flow Statements. The following diagram depicts a generalized for control flow statement implementation in Simulink.

In a Simulink for control flow statement, the For Iterator block iterates the contents of a For Iterator Subsystem, an atomic subsystem. For each iteration of the For Iterator block, the block programming of the For Iterator Subsystem executes one complete path through its blocks. Construct a Simulink for control flow statement as follows: • Drag a For Iterator Subsystem block from the Library Browser or Library window into your model. • You can set the For Iterator block to take external or internal input for the number of iterations it executes. Through the properties dialog of the For Iterator block you can set it to take input for the number of iterations through the port labeled N. This input must come from outside the For Iterator Subsystem. You can also set the number of iterations directly in the properties dialog. • You can set the For Iterator block to output its iterator value for use in the block programming of the For Iterator Subsystem. The iterator value is 1 for the first iteration and is incremented by 1 for each succeeding iteration. The For Iterator block works well with the Assignment block to reassign values in a vector or matrix. This is demonstrated in the following example. Note the matrix dimensions in the data being passed.

4-43

4

Creating a Model

The above example outputs the sin value of an input 2-by-5 matrix (2 rows, 5 columns) using a For subsystem containing an Assignment block. The process is as follows:
1 A 2-by-5 matrix is input to the Selector block and the Assignment block. 2 The Selector block strips off a 2-by-1 matrix from the input matrix at the

column value indicated by the current iteration value of the For Iterator block.
3 The sine of the 2-by-1 matrix is taken. 4 The sine value 2-by-1 matrix is passed to an Assignment block.

4-44

Creating Conditionally Executed Subsystems

5 The Assignment block, which takes the original 2-by-5 matrix as one of its

inputs, assigns the 2-by-1 matrix back into the original matrix at the column location indicated by the iteration value. The rows specified for reassignment in the property dialog for the Assignment block in the above example are [1,2]. Because there are only two rows in the original matrix, you could also have specified -1 for the rows, i.e., all rows.

Note Experienced Simulink users will note that the sin block is already capable of taking the sine of a matrix. The above example uses the sin block only as an example of changing each element of a matrix with the collaboration of an Assignment block and a For Iterator block.

Comparing Stateflow and Control Flow Statements
Stateflow already possesses the logical capabilities of the Simulink control flow statements. It can call Function-Call subsystems (see “Function-Call Subsystems” on page 4-34) on condition or iteratively. However, since Stateflow provides a great deal more in logical sophistication, if your requirements are simpler, you might find the capabilities of the Simulink control flow blocks sufficient for your needs. In addition, the control flow statements offer a few advantages, which are listed in the following topics.
Sample Times. The Function-Call subsystems that Stateflow can call are triggered subsystems. Triggered subsystems inherit their sample times from the calling block. However, the Action subsystems used in if-else and switch control flow statements and the While and For subsystems that make up while and for control flow statements are enabled subsystems. Enabled subsystems can have their own sample times independent of the calling block. This also allows you to use more categories of blocks in your iterated subsystem than in a Function-Call subsystem. Resetting of States When Reenabled. Simulink control flow statement blocks allow you to retain or reset (to their initial values) the values of states for Action, For, and While subsystems when they are reenabled. For detailed information, see the references for the While Iterator and For Iterator blocks regarding the

4-45

4

Creating a Model

parameter States when starting and the reference for the Action Port block regarding the parameter States when execution is resumed.

Using Stateflow with the Control Flow Blocks
You might want to consider the possibility of using Stateflow and the Simulink control flow blocks together. The following sections contain some examples that give you a few suggestions on how to combine the two.
Using Stateflow with If-Else or Switch Subsystems. In the following model, Stateflow places one of a variety of values in a Stateflow data object. Upon chart termination, a Simulink if control flow statement uses that data to make a conditional decision.

.

In this case, control is given to a Switch Case block, which uses the value to choose one of several case subsystems to execute.
Using Stateflow with While Subsystems. In the following diagram, Stateflow computes the value of a data object that is available to a condition input of a While Iterator block in do-while mode.

4-46

Creating Conditionally Executed Subsystems

The While Iterator block has iterative control over its host subsystem, which includes the Stateflow Chart block. In do-while mode, the While block is guaranteed to operate for its first iteration value (= 1). During that time, the Stateflow chart is awakened and sets a data value used by the While Iterator block, which is evaluated as a condition for the next while iteration. In the following diagram, the While block is now set in while mode. In this mode, the While Iterator block must have input to its initial condition port in order to execute its first iteration value. This value must come from outside the While subsystem.

4-47

4

Creating a Model

If the initial condition is true, the While Iterator block wakes up the Stateflow chart and executes it to termination. During that time the Stateflow chart sets data, which the While Iterator condition port uses as a condition for the next iteration.

4-48

Model Discretizer

Model Discretizer
The Model Discretizer selectively replaces continuous Simulink blocks with discrete equivalents. Discretization is a critical step in digital controller design and for hardware in-the-loop simulations. You can use this tool to prepare continuous models for use with the Real-Time Workshop Embedded Coder, which supports only discrete blocks. The Model Discretizer enables you to • Identify a model’s continuous blocks. • Change a block’s parameters from continuous to discrete. • Apply discretization settings to all continuous blocks in the model or to selected blocks. • Create configurable subsystems that contain multiple discretization candidates along with the original continuous block(s). • Switch among the different discretization candidates and evaluate the resulting model simulations.

Requirements
To use the Model Discretizer, you must have the Control System Toolbox, Version 5.2, installed.

4-49

4

Creating a Model

Discretizing a Model from the Model Discretizer GUI
To discretize a model, follow these steps: • “Start the Model Discretizer” on page 4-51 • “Specify the Transform Method” on page 4-51 • “Specify the Sample Time” on page 4-52 • “Specify the Discretization Method” on page 4-52 • “Discretize the Blocks” on page 4-56 The f14 model, shown below, demonstrates the steps in discretizing a model.

4-50

Model Discretizer

Start the Model Discretizer
To open the tool, select Model Discretizer from the Tools menu in a Simulink model. This displays the Simulink Model Discretizer window.

Alternatively, you can open the Model Discretizer from the MATLAB command window using the slmdldiscui function. The following command opens the Simulink Model Discretizer window with the f14 model.
slmdldiscui('f14')

To open a new Simulink model or library from the Model Discretizer, select Load model from the File menu.

Specify the Transform Method
The transform method specifies the type of algorithms used in the discretization. For more information on the different transform methods, see

4-51

4

Creating a Model

Continuous/Discrete Conversions of LTI Models in the Control Systems Toolbox documentation. The Transform method drop-down list contains the following options: • zero-order hold Zero-order hold on the inputs. • first-order hold Linear interpolation of inputs. • tustin Bilinear (Tustin) approximation. • tustin with prewarping Tustin approximation with frequency prewarping. • matched pole-zero Matched pole-zero method (for SISO systems only).

Specify the Sample Time
Enter the sample time in the Sample time field. You can specify an offset time by entering a two-element vector for discrete blocks or configurable subsystems. The first element is the sample time and the second element is the offset time. For example, an entry of [1.0 0.1] would specify a 1.0 second sample time with a 0.1 second offset. If no offset is specified, the default is zero. You can enter workspace variables when discretizing blocks in the s-domain. See “Discrete blocks (Enter parameters in s-domain)” on page 4-53.

Specify the Discretization Method
Specify the discretization method in the Replace current selection with field. The options are • Discrete blocks (Enter parameters in s-domain) Creates a discrete block whose parameters are retained from the corresponding continuous block. • Discrete blocks (Enter parameters in z-domain) Creates a discrete block whose parameters are “hard-coded” values placed directly into the block’s dialog.

4-52

Model Discretizer

• Configurable subsystem (Enter parameters in s-domain) Create multiple discretization candidates using s-domain values for the current selection. A configurable subsystem can consist of one or more blocks. • Configurable subsystem (Enter parameters in z-domain) Create multiple discretization candidates in z-domain for the current selection. A configurable subsystem can consist of one or more blocks.
Discrete blocks (Enter parameters in s-domain). Creates a discrete block whose

parameters are retained from the corresponding continuous block. The sample time and the discretization parameters are also on the block’s parameter dialog. The block is implemented as a masked discrete block that uses c2d to transform the continuous parameters to discrete parameters in the mask initialization code. These blocks have the unique capability of reverting to continuous behavior if the sample time is changed to zero. Entering the sample time as a workspace variable (`Ts', for example) allows for easy changeover from continuous to discrete and back again. See “Specify the Sample Time” on page 4-52.

Note Parameters are not tunable when Inline parameters is selected in the model’s Simulation Parameters dialog box.

4-53

4

Creating a Model

The figure below shows a continuous Transfer Function block next to a Transfer Function block that has been discretized in the s-domain. The Block Parameters dialog box for each block is shown below the block.

Discrete blocks (Enter parameters in z-domain). Creates a discrete block whose parameters are “hard-coded” values placed directly into the block’s dialog. The model discretizer uses the c2d function to obtain the discretized parameters, if needed.

For more help on the c2d function, type the following in the Command Window:
help c2d

4-54

Model Discretizer

The figure below shows a continuous Transfer Function block next to a Transfer Function block that has been discretized in the z-domain. The Block Parameters dialog box for each block is shown below the block.

Note If you want to recover exactly the original continuous parameter values after the Model Discretization session, you should enter parameters in the s-domain.

Configurable subsystem (Enter parameters in s-domain). Create multiple discretization candidates using s-domain values for the current selection. A configurable subsystem can consist of one or more blocks.

The Location for block in configurable subsystem field becomes active when this option is selected. This option allows you to either create a new configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or libraries for the configurable subsystem option.

Configurable subsystem (Enter parameters in z-domain). Create multiple

discretization candidates in z-domain for the current selection. A configurable subsystem can consist of one or more blocks.

4-55

4

Creating a Model

The Location for block in configurable subsystem field becomes active when this option is selected. This option allows you to either create a new configurable subsystem or overwrite an existing one.

Note The current directory must be writable in order to save the library or libraries for the configurable subsystem option.

Configurable subsystems are stored in a library containing the discretization candidates and the original continuous block. The library will be named <model name>_disc_lib and it will be stored in the current directory. For example a library containing a configurable subsystem created from the f14 model will be named f14_disc_lib. If multiple libraries are created from the same model, then the filenames will increment accordingly. For example, the second configurable subsystem library created from the f14 model will be named f14_disc_lib2. You can open a configurable subsystem library by right-clicking on the subsystem in the Simulink model and selecting Link options -> Go to library block from the pop-up menu.

Discretize the Blocks
To discretize blocks that are linked to a library, you must either discretize the blocks in the library itself or disable the library links in the model window. You can open the library from the Model Discretizer by selecting Load model from the File menu. You can disable the library links by right-clicking on the block and selecting
Link options -> Disable link from the pop-up menu.

There are two methods for discretizing blocks.
Select Blocks and Discretize.
1 Select a block or blocks in the Model Discretizer tree view pane.

To choose multiple blocks, press and hold the Ctrl button on the keyboard while selecting the blocks.

4-56

Model Discretizer

Note You must select blocks from the Model Discretizer tree view. Clicking on blocks in the Simulink editor does not select them for discretization.

2 Select Discretize current block from the Discretize menu if a single block

is selected or select Discretize selected blocks from the Discretize menu if multiple blocks are selected. You can also discretize the current block by clicking the Discretize button, shown below.

Store the Discretization Settings and Apply Them to Selected Blocks in the Model.
1 Enter the discretization settings for the current block. 2 Click Store Settings.

This adds the current block with its discretization settings to the group of preset blocks.
3 Repeat steps 1 and 2, as necessary. 4 Select Discretize preset blocks from the Discretize menu.

Deleting a Discretization Candidate from a Configurable Subsystem
You can delete a discretization candidate from a configurable subsystem by selecting it in the Location for block in configurable subsystem field and clicking the Delete button, shown below.

4-57

4

Creating a Model

Undoing a Discretization
To undo a discretization, click the Undo discretization button, shown below.

Alternatively, you can select Undo discretization from the Discretize menu. This operation undoes discretizations in the current selection and its children. For example, performing the undo operation on a subsystem will remove discretization from all blocks in all levels of the subsystem’s hierarchy.

4-58

Model Discretizer

Viewing the Discretized Model
The Model Discretizer displays the model in a hierarchical tree view.

Viewing Discretized Blocks
The block’s icon in the tree view becomes highlighted with a “z” when the block has been discretized. The figure below shows that the Aircraft Dynamics Model subsystem has been discretized into a configurable subsystem with three discretization candidates. The other blocks in this f14 model have not been discretized.

4-59

4

Creating a Model

The following figure shows the Aircraft Dynamics Model subsystem of the f14 demo model after discretization into a configurable subsystem containing the original continuous model and three discretization candidates.

4-60

Model Discretizer

The following figure shows the library containing the Aircraft Dynamics Model configurable subsystem with the original continuous model and three discretization candidates.

Refreshing Model Discretizer View of the Model
To refresh the Model Discretizer’s tree view of the model when the model has been changed, click the Refresh button, shown below.

Alternatively, you can select Refresh from the View menu.

4-61

4

Creating a Model

Discretizing Blocks from the Simulink Model
You can replace continuous blocks in a Simulink model with the equivalent blocks discretized in the s-domain using the Discretizing library. The procedure below shows how to replace a continuous Transfer Fcn block in the Aircraft Dynamics Model subsystem of the f14 model with a discretized Transfer Fcn block from the Discretizing Library. The block is discretized in the s-domain with a zero-order hold transform method and a 2 second sample time.
1 Open the f14 model. 2 Open the Aircraft Dynamics Model subsystem in the f14 model.

4-62

Model Discretizer

3 Open the Discretizing library window.

Enter discretizing at the MATLAB command prompt. The Library: discretizing window opens. This library contains s-domain discretized blocks.

4 Add the Discretized Transfer Fcn block to the f14/Aircraft Dynamics Model

window.
a Click the Discretized Transfer Fcn block in Library: discretizing

window.
b Drag it into the f14/Aircraft Dynamics Model window.

4-63

4

Creating a Model

5 Open the parameter dialog box for the Transfer Fcn.1 block.

Double-click the Transfer Fcn.1 block in the f14/Aircraft Dynamics Model window. The Block Parameters: Transfer Fcn.1 dialog box opens.

4-64

Model Discretizer

6 Open the parameter dialog box for the Discretized Transfer Fcn block.

Double-click the Discretized Transfer Fcn block in the f14/Aircraft Dynamics Model window. The Block Parameters: Discretized Transfer Fcn dialog box opens.

Copy the parameter information from the Transfer Fcn.1 block’s dialog box to the Discretized Transfer Fcn block’s dialog box.

4-65

4

Creating a Model

7 Enter 2 in the Sample time field. 8 Select zoh from the Method drop-down list.

The parameter dialog box for the Discretized Transfer Fcn. now looks like this.

4-66

Model Discretizer

9 Click OK.

The f14/Aircraft Dynamics Model window now looks like this.

4-67

4

Creating a Model

1 Delete the original Transfer Fcn.1 block. 0 a Click the Transfer Fcn.1 block. b Press the Delete key. The f14/Aircraft Dynamics Model window now

looks like this.

4-68

Model Discretizer

11 Add the Discretized Transfer Fcn block to the model. a Click the Discretized Transfer Fcn block. b Drag the Discretized Transfer Fcn block into position to complete the

model. The f14/Aircraft Dynamics Model window now looks like this.

4-69

4

Creating a Model

Discretizing a Model from the MATLAB Command Window
Use the sldiscmdl function to discretize Simulink models from the MATLAB Command Window. You can specify the transform method, the sample time, and the discretization method with the sldiscmdl function. For example, the following command discretizes the f14 model in the s-domain with a 1 second sample time using a zero-order hold transform method.
sldiscmdl('f14',1.0,'zoh')

For more information on the sldiscmdl function, see the reference pages in Simulink Model Construction Commands.

4-70

Using Callback Routines

Using Callback Routines
You can define MATLAB expressions that execute when the block diagram or a block is acted upon in a particular way. These expressions, called callback routines, are associated with block, port, or model parameters. For example, the callback associated with a block’s OpenFcn parameter is executed when the model user double-clicks on that block’s name or the path changes.

Tracing Callbacks
Callback tracing allows you to determine the callbacks Simulink invokes and in what order Simulink invokes them when you open or simulate a model. To enable callback tracing, select the Callback tracing option on the Simulink Preferences dialog box (see “Setting Simulink Preferences” on page 1-16) or execute set_param(0, 'CallbackTracing', 'on'). This option causes Simulink to list callbacks in the MATLAB Command Window as they are invoked.

Creating Model Callback Functions
You can create model callback functions interactively or programmatically. Use the Callbacks pane of the model’s Model Properties dialog box (see “Callbacks Pane” on page 4-80)to create model callbacks interactively. To create a callback programmatically, use the set_param command to assign a MATLAB expression that implements the function to the model parameter corresponding to the callback (see “Model Callback Parameters” on page 4-72). For example, this command evaluates the variable testvar when the user double-clicks the Test block in mymodel.
set_param('mymodel/Test', 'OpenFcn', testvar)

You can examine the clutch system (clutch.mdl) for routines associated with many model callbacks.

4-71

4

Creating a Model

Model Callback Parameters
The following table lists the model parameters used to specify model callback routines and indicates when the corresponding callback routines are executed.
Parameter CloseFcn PostLoadFcn When Executed

Before the block diagram is closed. After the model is loaded. Defining a callback routine for this parameter might be useful for generating an interface that requires that the model has already been loaded. Called at start of model simulation. After the model is saved. Before the model is loaded. Defining a callback routine for this parameter might be useful for loading variables used by the model. Before the model is saved. Before the simulation starts. After the simulation stops. Output is written to workspace variables and files before the StopFcn is executed.

InitFcn PostSaveFcn PreLoadFcn

PreSaveFcn StartFcn StopFcn

4-72

Using Callback Routines

Creating Block Callback Functions
You can create model callback functions interactively or programmatically. Use the Callbacks pane of the model’s Block Properties dialog box (see “Callbacks Pane” on page 5-12) to create model callbacks interactively. To create a callback programmatically, use the set_param command to assign a MATLAB expression that implements the function to the block parameter corresponding to the callback (see “Block Callback Parameters” on page 4-73).

Note A callback for a masked subsystem cannot directly reference the parameters of the masked subsystem (see “About Masks” on page 12-2). The reason? Simulink evaluates block callbacks in a model’s base workspace whereas the mask parameters reside in the masked subsystem’s private workspace. A block callback, however, can use get_param to obtain the value of a mask parameter, e.g., get_param(gcb, 'gain'), where gain is the name of a mask parameter of the current block.

Block Callback Parameters
This table lists the parameters for which you can define block callback routines, and indicates when those callback routines are executed. Routines that are executed before or after actions take place occur immediately before or after the action.
Parameter CloseFcn When Executed

When the block is closed using the close_system command. After a block is copied. The callback is recursive for Subsystem blocks (that is, if you copy a Subsystem block that contains a block for which the CopyFcn parameter is defined, the routine is also executed). The routine is also executed if an add_block command is used to copy the block.

CopyFcn

4-73

4

Creating a Model

Parameter DeleteFcn

When Executed

Before a block is deleted, e.g., when the user deletes the block or closes the model containing the block. This callback is recursive for Subsystem blocks. When the block has been destroyed. Before the block diagram is compiled and before block parameters are evaluated. After the block diagram is loaded. This callback is recursive for Subsystem blocks. Before the block diagram is closed. This callback is recursive for Subsystem blocks. When the block is moved or resized. After a block’s name and/or path changes. When a Subsystem block’s path is changed, it recursively calls this function for all blocks it contains after calling its own NameChangeFcn routine. When the block is opened. This parameter is generally used with Subsystem blocks. The routine is executed when you double-click the block or when an open_system command is called with the block as an argument. The OpenFcn parameter overrides the normal behavior associated with opening a block, which is to display the block’s dialog box or to open the subsystem. Before closing a subsystem containing the block or when the block is made part of a new subsystem using the new_system command (see new_system in the “Model Creation Commands” section of the Simulink online Help). Before the block diagram is saved. This callback is recursive for Subsystem blocks.

DestroyFcn InitFcn

LoadFcn

ModelCloseFcn

MoveFcn NameChangeFcn

OpenFcn

ParentCloseFcn

PreSaveFcn

4-74

Using Callback Routines

Parameter PostSaveFcn

When Executed

After the block diagram is saved. This callback is recursive for Subsystem blocks. After the block diagram is compiled and before the simulation starts. In the case of an S-Function block, StartFcn executes immediately before the first execution of the block’s mdlProcessParameters function. See “S-Function Callback Methods” in Writing S-Functions for more information. At any termination of the simulation. In the case of an S-Function block, StopFcn executes after the block’s mdlTerminate function executes. See “S-Function Callback Methods” in Writing S-Functions for more information. When a block delete is undone.

StartFcn

StopFcn

UndoDeleteFcn

4-75

4

Creating a Model

Port Callback Parameters
Block input and output ports have a single callback parameter, ConnectionCallback. This parameter allows you to set callbacks on ports that are triggered every time the connectivity of those ports changes. Examples of connectivity changes include deletion of blocks connected to the port and deletion, disconnection, or connection of branches or lines to the port. Use get_param to get the port handle of a port and set_param to set the callback on the port. For example, suppose the currently selected block has a single input port. The following code fragment sets foo as the connection callback on the input port.
phs = get_param(gcb, 'PortHandles'); set_param(phs.Inport, 'ConnectionCallback', 'foo');

The first argument of the callback function must be a port handle. The callback function can have other arguments (and a return value) as well. For example, the following is a valid callback function signature.
function foo(port, otherArg1, otherArg2)

4-76

Managing Model Versions

Managing Model Versions
Simulink has features that help you to manage multiple versions of a model. • As you edit a model, Simulink generates version control information about the model, including a version number, who created and last updated the model, and an optional change history. Simulink saves the automatically generated version control information with the model. See “Version Control Properties” on page 4-85 for more information. • The Simulink Model Parameters dialog box lets you edit some of the version control information stored in the model and select various version control options (see “Model Properties Dialog Box” on page 4-79). • The Simulink Model Info block lets you display version control information, including information maintained by an external version control system, as an annotation block in a model diagram. • Simulink version control parameters let you access version control information from the MATLAB command line or an M-file. • The Source Control submenu of the Simulink File menu allows you to check models into and out of your source control system. See “Interfacing with Source Control Systems” in the MATLAB documentation for more information.

Specifying the Current User
When you create or updates a model, Simulink logs your name in the model for version control purposes. Simulink assumes that your name is specified by at least one of the following environment variables: USER, USERNAME, LOGIN, or LOGNAME. If your system does not define any of these variables, Simulink does not update the user name in the model. UNIX systems define the USER environment variable and set its value to the name you use to log on to your system. Thus, if you are using a UNIX system, you do not have to do anything to enable Simulink to identify you as the current user. Windows systems, on the other hand, might define some or none of the “user name” environment variables that Simulink expects, depending on the version of Windows installed on your system and whether it is connected to a network. Use the MATLAB command getenv to determine which of the environment variables is defined. For example, enter

4-77

4

Creating a Model

getenv('user')

at the MATLAB command line to determine whether the USER environment variable exists on your Windows system. If not, you must set it yourself. On Windows 98, set the value by entering the following line
set user=yourname

in your system’s autoexec.bat file, where yourname is the name by which you want to be identified in a model file. Save the file autoexec.bat and reboot your computer for the changes to take effect.

Note The autoexec.bat file typically is found in the c:\ directory on your system’s hard disk.

On Windows NT and 2000, use the Environment variables pane of the System Properties dialog box to set the USER environment variable (if it is not already defined).

4-78

Managing Model Versions

To display the System Properties dialog box, select Start->Settings->Control Panel to open the Control Panel. Double-click the System icon. To set the USER variable, enter USER in the Variable field and enter your login name in the Value field. Click Set to save the new environment variable. Then click OK to close the dialog box.

Model Properties Dialog Box
The Model Properties dialog box allows you to set various version control parameters and model callback functions. To display the dialog box, choose Model Properties from the Simulink File menu.

The dialog box includes the following panes.

Summary Pane
The Summary pane lets you edit the following version control parameters.

4-79

4

Creating a Model

Creator. Name of the person who created this model. Simulink sets this property to the value of the USER environment variable when you create the model. Edit this field to change the value. Created. Date and time this model was created. Model description. Description of the model.

Callbacks Pane
The Callbacks pane lets you specify functions to be invoked by Simulink at specific points in the simulation of the model.

Enter the names of any callback functions you want to be invoked in the appropriate fields. See “Creating Model Callback Functions” on page 4-71 for information on the callback functions listed on this pane.

4-80

Managing Model Versions

History Pane
The History pane allows you to enable, view, and edit this model’s change history.

The History pane has two panels: the Version information panel and the Model History panel.

Version Information Panel
The contents of the Version information panel depend on the item selected in the list at the top of the panel. When View current values is selected, the panel shows the following fields.
Model version. Version number for this model. You cannot edit this field. Last saved by. Name of the person who last saved this model. Simulink sets the value of this parameter to the value of the USER environment variable when you

save a model. You cannot edit this field.

4-81

4

Creating a Model

Last saved date. Date that this model was last saved. Simulink sets the value of this parameter to the system date and time whenever you save a model. You cannot edit this field.

When Edit format strings is selected, the Version information panel shows the format strings for each of the fields listed when View current values is selected.

Model version. Enter a format string describing the format used to display the model version number in the Model Properties pane and in Model Info blocks. The value of this parameter can be any text string. The text string can include occurrences of the tag %<AutoIncrement:#> where # is an integer. Simulink replaces the tag with an integer when displaying the model’s version number. For example, it displays the tag 1.%<AutoIncrement:2>

as
1.2

4-82

Managing Model Versions

Simulink increments # by 1 when saving the model. For example, when you save the model,
1.%<1.%<AutoIncrement:2>

becomes
1.%<1.%<AutoIncrement:3>

and Simulink reports the model version number as 1.3.
Last saved by. Enter a format string describing the format used to display the

Last saved by value in the History pane and the ModifiedBy entry in the history log and Model Info blocks. The value of this field can be any string. The string can include the tag %<Auto>. Simulink replaces occurrences of this tag with the current value of the USER environment variable.
Last saved on. Enter a format string describing the format used to display the

Last saved on date in the History pane and the ModifiedOn entry in the history log and the in Model Info blocks. The value of this field can be any string. The string can contain the tag %<Auto>. Simulink replaces occurrences of this tag with the current date and time.

Model History Panel
The model history panel contains a scrollable text field and an option list. The text field displays the history for the model in a scrollable text field. To change the model history, edit the contents of this field. The option list allows you to enable or disable Simulink’s model history feature. To enable the history feature, select When saving model from the Prompt to update model history list. This causes Simulink to prompt you to enter a comment when saving the model. Typically you would enter any changes that you have made to the model since the last time you saved it. Simulink stores this information in the model’s change history log. See “Creating a Model Change History” on page 4-83 for more information. To disable the change history feature, select Never from the Prompt to update model history list.

Creating a Model Change History
Simulink allows you to create and store a record of changes to a model in the model itself. Simulink compiles the history automatically from comments that you or other users enter when they save changes to a model.

4-83

4

Creating a Model

Logging Changes
To start a change history, select Prompt for Comments When Save for the Modified history update option from the History pane on the Simulink Model Properties dialog box. The next time you save the model, Simulink displays a Log Change dialog box.

To add an item to the model’s change history, enter the item in the Modified Comments edit field and click Save. If you do not want to enter an item for this session, clear the Include “Modified Contents” in “Modified History” option. To discontinue change logging, clear the Show this dialog box next time when save option.

Editing the Change History
To edit the change history for a model, click the Edit button on the History pane of the Simulink Model Properties dialog box. Simulink displays the model’s history in a Modification History dialog box.

4-84

Managing Model Versions

Edit the history displayed in the dialog and select Apply or OK to save the changes.

Version Control Properties
Simulink stores version control information as model parameters in a model. You can access this information from the MATLAB command line or from an M-file, using the Simulink get_param command. The following table describes the model parameters used by Simulink to store version control information.
Property Created Creator ModifiedBy ModifiedByFormat Description

Date created. Name of the person who created this model. Person who last modified this model. Format of the ModifiedBy parameter. Value can be any string. The string can include the tag %<Auto>. Simulink replaces the tag with the current value of the USER environment variable. Date modified.

ModifiedDate

4-85

4

Creating a Model

Property ModifiedDateFormat

Description

Format of the ModifiedDate parameter. Value can be any string. The string can include the tag %<Auto>. Simulink replaces the tag with the current date and time when saving the model. Comment entered by user who last updated this model. History of changes to this model. Version number. Format of model version number. Can be any string. The string can contain the tag %<AutoIncrement:#> where # is an integer. Simulink replaces the tag with # when displaying the version number. It increments # when saving the model. Description of model. Date last modified.

ModifiedComment

ModifiedHistory ModelVersion ModelVersionFormat

Description LastModificationDate

4-86

5
Working with Blocks
This section explores the following block-related topics. “About Blocks” on page 5-2 “Editing Blocks” on page 5-4 Explains the difference between virtual and nonvirtual blocks. How to cut and paste blocks.

“Setting Block Parameters” on page 5-7 How to set parameters that determine a block’s behavior. “Changing a Block’s Appearance” on page 5-15 “Controlling and Displaying Block Execution Order” on page 5-19 “Look-Up Table Editor” on page 5-21 “Working with Block Libraries” on page 5-28 How to change the size, orientation, color, and labeling of a block. How to set a block’s execution priority and display its execution order. How to change the elements of look-up table blocks. How to create and use block libraries.

5

Working with Blocks

About Blocks
Blocks are the elements from which Simulink models are built. You can model virtually any dynamic system by creating and interconnecting blocks in appropriate ways. This section discusses how to use blocks to build models of dynamic systems.

Block Data Tips
On Microsoft Windows, Simulink displays information about a block in a pop-up window when you allow the pointer to hover over the block in the diagram view. To disable this feature or control what information a data tip includes, select Block data tips options from the Simulink View menu.

Virtual Blocks
When creating models, you need to be aware that Simulink blocks fall into two basic categories: nonvirtual and virtual blocks. Nonvirtual blocks play an active role in the simulation of a system. If you add or remove a nonvirtual block, you change the model’s behavior. Virtual blocks, by contrast, play no active role in the simulation; they help organize a model graphically. Some Simulink blocks are virtual in some circumstances and nonvirtual in others. Such blocks are called conditionally virtual blocks. The following table lists Simulink virtual and conditionally virtual blocks.
Block Name Condition Under Which Block Is Virtual

Bus Selector Demux Enable Port From Goto Goto Tag Visibility Ground

Always virtual. Always virtual. Always virtual. Always virtual. Always virtual. Always virtual. Always virtual.

5-2

About Blocks

Block Name

Condition Under Which Block Is Virtual

Inport

Virtual unless the block resides in a conditionally executed subsystem and has a direct connection to an outport block. Always virtual. Virtual when the block resides within any subsystem block (conditional or not), and does not reside in the root (top-level) Simulink window. Virtual except in matrix mode. Virtual unless the block is conditionally executed and/or the block’s Treat as Atomic Unit option is selected. Always virtual. Virtual when the outport port is not present.

Mux Outport

Selector Subsystem

Terminator Trigger Port

5-3

5

Working with Blocks

Editing Blocks
The Simulink Editor allows you to cut and paste blocks in and between models.

Copying and Moving Blocks from One Window to Another
As you build your model, you often copy blocks from Simulink block libraries or other libraries or models into your model window. To do this, follow these steps:
1 Open the appropriate block library or model window. 2 Drag the block to copy into the target model window. To drag a block,

position the cursor over the block icon, then press and hold down the mouse button. Move the cursor into the target window, then release the mouse button. You can also drag blocks from the Simulink Library Browser into a model window. See “Browsing Block Libraries” on page 5-35 for more information.

Note Simulink hides the names of Sum, Mux, Demux, Bus Creator, and Bus Selector blocks when you copy them from the Simulink block library to a model. This is done to avoid unnecessarily cluttering the model diagram. (The shapes of these blocks clearly indicate their respective functions.)

You can also copy blocks by using the Copy and Paste commands from the Edit menu:
1 Select the block you want to copy. 2 Choose Copy from the Edit menu. 3 Make the target model window the active window. 4 Choose Paste from the Edit menu.

Simulink assigns a name to each copied block. If it is the first block of its type in the model, its name is the same as its name in the source window. For

5-4

Editing Blocks

example, if you copy the Gain block from the Math library into your model window, the name of the new block is Gain. If your model already contains a block named Gain, Simulink adds a sequence number to the block name (for example, Gain1, Gain2). You can rename blocks; see “Manipulating Block Names” on page 5-16. When you copy a block, the new block inherits all the original block’s parameter values. Simulink uses an invisible five-pixel grid to simplify the alignment of blocks. All blocks within a model snap to a line on the grid. You can move a block slightly up, down, left, or right by selecting the block and pressing the arrow keys. You can display the grid in the model window by typing the following command in the MATLAB window.
set_param('<model name>','showgrid','on')

To change the grid spacing, enter
set_param('<model name>','gridspacing',<number of pixels>)

For example, to change the grid spacing to 20 pixels, enter
set_param('<model name>','gridspacing',20)

For either of the above commands, you can also select the model, then enter gcs instead of <model name>. You can copy or move blocks to compatible applications (such as word processing programs) using the Copy, Cut, and Paste commands. These commands copy only the graphic representation of the blocks, not their parameters. Moving blocks from one window to another is similar to copying blocks, except that you hold down the Shift key while you select the blocks. You can use the Undo command from the Edit menu to remove an added block.

Moving Blocks in a Model
To move a single block from one place to another in a model window, drag the block to a new location. Simulink automatically repositions lines connected to the moved block.

5-5

5

Working with Blocks

To move more than one block, including connecting lines:
1 Select the blocks and lines. If you need information about how to select more

than one block, see “Selecting More Than One Object” on page 4-3.
2 Drag the objects to their new location and release the mouse button.

Copying Blocks in a Model
You can copy blocks in a model as follows. While holding down the Ctrl key, select the block with the left mouse button, then drag it to a new location. You can also do this by dragging the block using the right mouse button. Duplicated blocks have the same parameter values as the original blocks. Sequence numbers are added to the new block names.

Deleting Blocks
To delete one or more blocks, select the blocks to be deleted and press the Delete or Backspace key. You can also choose Clear or Cut from the Edit menu. The Cut command writes the blocks into the clipboard, which enables you to paste them into a model. Using the Delete or Backspace key or the Clear command does not enable you to paste the block later. You can use the Undo command from the Edit menu to replace a deleted block.

5-6

Setting Block Parameters

Setting Block Parameters
All Simulink blocks have a common set of parameters, called block properties, that you can set (see “Common Block Parameters” in the online Simulink Help). See “Block Properties Dialog Box” on page 5-10 for information on setting block properties. In addition, many blocks have one or more block-specific parameters that you can set (see “Block-Specific Parameters” in the online Simulink reference). By setting these parameters, you can customize the behavior of the block to meet the specific requirements of your model.

Setting Block-Specific Parameters
Every block that has block-specific parameters has a dialog box that you can use to view and set the parameters. You can display this dialog by selecting the block in the model window and choosing BLOCK Parameters from the model window’s Edit menu or from the model window’s context (right-click) menu, where BLOCK is the name of the block you selected, e.g., Constant Parameters. You can also display a block’s parameter dialog box by double-clicking its icon in the model or library window.

Note This holds true for all blocks with parameter dialog boxes except for the Subsystem block. You must use the model window’s Edit menu or context menu to display a Subsystem block’s parameter dialog.

For information on the parameter dialog of a specific block, see the block’s documentation in the “Simulink Blocks” in the online Simulink Help. You can set any block parameter, using the Simulink set_param command. See set_param in the online Simulink Help for details. You can use any MATLAB constant, variable, or expression that evaluates to an acceptable result when specifying the value of a parameter in a block parameter dialog or a set_param command.

Tuning Parameters
Simulink lets you change the values of block parameters during simulation. You can use a block’s dialog box to tune the parameters of any block, except a source block (see “Changing Source Block Parameters” on page 5-9), that has

5-7

5

Working with Blocks

tunable parameters. You can also use the MATLAB Command Line to tune block parameters. To use the block’s parameter dialog box, open the block’s parameter dialog box, change the value displayed in the dialog box, and click the dialog box’s OK or Apply button. You can use the set_param command to change the value of a variable at the MATLAB Command Line during simulation. Or, if the model uses a MATLAB workspace variable to specify the parameter’s value, you can change the parameter’s value by assigning a new value to the variable. In either case, you must update the model’s block diagram for the change to take effect.

Inlining Parameters
You can declare some or all of a model’s parameters as nontunable. Declaring a parameter as nontunable allows the Real-Time Workshop to include the parameter as a constant in code generated from the model, an optimization known as inlining a parameter. To inline all of a model’s parameters, select the Inline parameters option on the Advanced pane of the Simulation Parameters dialog box. To inline some but not all of a model’s parameters, you must first declare all of the parameters as inlined by selecting the Inline parameters option on the Advanced pane of the Simulation Parameters dialog box. You must then specify the exceptions, using either the Model Parameter Configuration dialog box (see “Model Parameter Configuration Dialog Box” on page 10-34) or Simulink.Parameter objects (see “Using Data Objects as Parameters” on page 7-12).

Using Parameter Objects to Specify Parameter Tunability
To declare a parameter to be tunable even when the Inline parameters option is set, use an instance of Simulink.Parameter class to specify the parameter’s value and set the parameter object’s RTWInfo.StorageClass property to any value but 'Auto' (the default).
gain.RTWInfo.StorageClass = 'SimulinkGlobal';

If you set the RTWInfo.StorageClass property to any value other than Auto, you should not include the parameter in the tunable parameters table in the model’s Model Parameter Configuration dialog box.

5-8

Setting Block Parameters

Note Simulink halts the simulation and displays an error message if it detects a conflict between the properties of a parameter as specified by a parameter object and the properties of the parameter as specified in the Model Parameter Configuration dialog box.

Changing Source Block Parameters
Opening the dialog box of a source block with tunable parameters (see “Source Blocks with Tunable Parameters” on page 5-9) causes a running simulation to pause. While the simulation is paused, you can edit the parameter values displayed on the dialog box. However, you must close the dialog box to have the changes take effect and allow the simulation to continue. Similarly, starting a simulation causes any open dialog boxes associated with source blocks with tunable parameters to close.

Note If you enable the Inline parameters option, Simulink does not pause the simulation when you open a source block’s dialog box because all of the parameter fields are disabled and can be viewed but cannot be changed.

Source Blocks with Tunable Parameters
Source blocks with tunable parameters include the following blocks. • Simulink source blocks, including - Band-Limited White Noise - Chirp Signal - Constant - Pulse Generator - Ramp - Random Number - Repeating Sequence - Signal Generator - Sine Wave

5-9

5

Working with Blocks

- Step - Uniform Random Number • User-developed masked subsystem blocks that have one or more tunable parameters and one or more output ports, but no input ports. • S-Function blocks that have one or more tunable parameters and one or more output ports but no input ports.

Block Properties Dialog Box
This dialog box lets you set a block’s properties. To display this dialog, select the block in the model window and then select Block Properties from the Edit menu.

The dialog box contains the following tabbed panes.

General Pane
This pane allows you to set the following properties.

5-10

Setting Block Parameters

Description. Brief description of the block’s purpose. Priority. Execution priority of this block relative to other blocks in the model.

See “Assigning Block Priorities” on page 5-19 for more information.
Tag. Text that is assigned to the block’s Tag parameter and saved with the block in the model. You can use the tag to create your own block-specific label for a block.

Block Annotation Pane
The block annotation pane allows you to display the values of selected parameters of a block in an annotation that appears beneath the block’s icon.

Enter the text of the annotation in the text field that appears on the right side of the pane. The text can include block property tokens, for example
%<Name> Priority = %<priority>

5-11

5

Working with Blocks

of the form %<param> where param is the name of a parameter of the block. When displaying the annotation, Simulink replaces the tokens with the values of the corresponding parameters, e.g.,

The block property tag list on the left side of the pane lists all the tags that are valid for the currently selected block. To include one of the listed tags in the annotation, select the tag and then click the button between the tag list and the annotation field. You can also create block annotations programmatically. See “Creating Block Annotations Programmatically” on page 5-13.

Callbacks Pane
The Callbacks Pane allows you to specify implementations for a block’s callbacks (see “Using Callback Routines” on page 4-71).

5-12

Setting Block Parameters

To specify an implementation for a callback, select the callback in the callback list on the left side of the pane. Then enter MATLAB commands that implement the callback in the right-hand field. Click OK or Append to save the change. Simulink appends an asterisk to the name of the saved callback to indicate that it has been implemented.

Creating Block Annotations Programmatically
You can use a block’s AttributesFormatString parameter to display selected parameters of a block beneath the block as an “attributes format string,” i.e. a string that specifies values of the block’s attributes (parameters). The “Model and Block Parameters” section in the online Simulink reference describes the parameters that a block can have. Use Simulink’s set_param command to set this parameter to the desired attributes format string. The attributes format string can be any text string that has embedded parameter names. An embedded parameter name is a parameter name preceded by %< and followed by >, for example, %<priority>. Simulink displays the attributes format string beneath the block’s icon, replacing each parameter name with the corresponding parameter value. You can use line-feed characters (\n) to display each parameter on a separate line. For example, specifying the attributes format string
pri=%<priority>\ngain=%<Gain>

for a Gain block displays

If a parameter’s value is not a string or an integer, Simulink displays N/S (not supported) for the parameter’s value. If the parameter name is invalid, Simulink displays ??? as the parameter value.

State Properties Dialog Box
The State Properties dialog box allows you to specify code generation options for certain blocks with discrete states. To get help on using this dialog box, you must install the Real-Time Workshop documentation. See “Block States:

5-13

5

Working with Blocks

Storing and Interfacing” in the online documentation for Real-Time Workshop for more information.

5-14

Changing a Block’s Appearance

Changing a Block’s Appearance
The Simulink Editor allows you to change the size, orientation, color, and label location of a block in a block diagram.

Changing the Orientation of a Block
By default, signals flow through a block from left to right. Input ports are on the left, and output ports are on the right. You can change the orientation of a block by choosing one of these commands from the Format menu: • The Flip Block command rotates the block 180 degrees. • The Rotate Block command rotates a block clockwise 90 degrees. The figure below shows how Simulink orders ports after changing the orientation of a block using the Rotate Block and Flip Block menu items. The text in the blocks shows their orientation. 1 2 3 Rotate Down Rotate

1 2 3

Left to Right

Flip

Right to Left

1 2 3

Rotate

Up 1 2 3

Rotate

Resizing a Block’s Icon
To change the size of a block, select it, then drag any of its selection handles. While you hold down the mouse button, a dotted rectangle shows the new block size. When you release the mouse button, the block is resized.

5-15

5

Working with Blocks

For example, the figure below shows a Signal Generator block being resized. The lower-right handle was selected and dragged to the cursor position. When the mouse button is released, the block takes its new size. This figure shows a block being resized.

Displaying Parameters Beneath a Block’s Icon
You can cause Simulink to display one or more of a block’s parameters beneath the block’s icon in a block diagram. You specify the parameters to be displayed in the following ways: • By entering an attributes format string in the Attributes format string field of the block’s Block Properties dialog box (see “Block Properties Dialog Box” on page 5-10) • By setting the value of the block’s AttributesFormatString property to the format string, using set_param

Using Drop Shadows
You can add a drop shadow to a block by selecting the block, then choosing Show Drop Shadow from the Format menu. When you select a block with a drop shadow, the menu item changes to Hide Drop Shadow. The figure below shows a Subsystem block with a drop shadow.

Manipulating Block Names
All block names in a model must be unique and must contain at least one character. By default, block names appear below blocks whose ports are on the sides, and to the left of blocks whose ports are on the top and bottom, as this figure shows.

5-16

Changing a Block’s Appearance

Changing Block Names
You can edit a block name in one of these ways: • To replace the block name, click the block name, double-click or drag the cursor to select the entire name, then enter the new name. • To insert characters, click between two characters to position the insertion point, then insert text. • To replace characters, drag the mouse to select a range of text to replace, then enter the new text. When you click the pointer anywhere else in the model or take any other action, the name is accepted or rejected. If you try to change the name of a block to a name that already exists or to a name with no characters, Simulink displays an error message. You can modify the font used in a block name by selecting the block, then choosing the Font menu item from the Format menu. Select a font from the Set Font dialog box. This procedure also changes the font of text on the block icon. You can cancel edits to a block name by choosing Undo from the Edit menu.

Note If you change the name of a library block, all links to that block become unresolved.

Changing the Location of a Block Name
You can change the location of the name of a selected block in two ways: • By dragging the block name to the opposite side of the block. • By choosing the Flip Name command from the Format menu. This command changes the location of the block name to the opposite side of the block.

5-17

5

Working with Blocks

For more information about block orientation, see “Changing the Orientation of a Block” on page 5-15.

Changing Whether a Block Name Appears
To change whether the name of a selected block is displayed, choose a menu item from the Format menu: • The Hide Name menu item hides a visible block name. When you select Hide Name, it changes to Show Name when that block is selected. • The Show Name menu item shows a hidden block name.

Specifying a Block’s Color
See “Specifying Block Diagram Colors” on page 4-5 for information on how to set the color of a block.

5-18

Controlling and Displaying Block Execution Order

Controlling and Displaying Block Execution Order
The Simulink Editor allows you to control and display the order in which Simulink executes blocks.

Assigning Block Priorities
You can assign execution priorities to nonvirtual blocks or virtual subsystem blocks in a model (see “Virtual Blocks” on page 5-2). Higher priority blocks execute before lower priority blocks, though not necessarily before blocks that have no assigned priority. You can assign block priorities interactively or programmatically. To set priorities programmatically, use the command
set_param(b,'Priority','n')

where b is a block path and n is any valid integer. (Negative numbers and 0 are valid priority values.) The lower the number, the higher the priority; that is, 2 is higher priority than 3. To set a block’s priority interactively, enter the priority in the Priority field of the block’s Block Properties dialog box (see “Block Properties Dialog Box” on page 5-10). Simulink honors the block priorities that you specify only if they are consistent with the Simulink block sorting algorithm (see “Solvers” on page 2-17). If the specified priorities are inconsistent, Simulink ignores the specified priority and places the block in an appropriate location in the block execution order. If Simulink is unable to honor a block priority, it displays a Block Priority Violation diagnostic message (see “The Diagnostics Pane” on page 10-25).

5-19

5

Working with Blocks

Displaying Block Execution Order
To display the execution order of blocks during simulation, select Execution order from the Simulink Format menu. Selecting this option causes Simulink to display a number in the top right corner of each block in a block diagram.

The number indicates the execution order of the block relative to other blocks in the diagram. For example, 1 indicates that the block is the first block executed on every time step, 2 indicates that the block is the second block executed on every time step, and so on.

5-20

Look-Up Table Editor

Look-Up Table Editor
The Look-Up Table Editor allows you to inspect and change the table elements of any look-up table (LUT) block in a model (see “Look-Up Tables” in the online Simulink documentation), including custom LUT blocks that you have created, using the Simulink Mask Editor (see “Editing Custom LUT Blocks” on page 5-26). You can also use a block’s parameter dialog to edit its table. However, that requires you to open the subsystem containing the block first and than its parameter dialog box first The LUT editor allows you to skip these steps. This section explains how to open and use the LUT editor to edit LUT blocks.

Note You cannot use the LUT Editor to change the dimensions of a look-up table. You must use the block’s parameter dialog box for this purpose.

To open the editor, select Look-up table editor from the Simulink Tools menu. The editor appears.

The editor contains two panes. The pane on the left is a LUT block browser. It allows you to browse and select LUT blocks in any open model (see “Browsing LUT Blocks” on page 5-22). The pane on the right allows you to edit the selected block’s look-up table (“Editing Table Values” on page 5-23).

5-21

5

Working with Blocks

Browsing LUT Blocks
The Models list in the upper left corner of the LUT Editor lists the names of all models open in the current MATLAB session.To browse any open model’s LUT table blocks, select the model’s name from the list. A tree-structured view of the selected model’s LUT blocks appears in the Table blocks field beneath the Models list.

The tree view initially lists all the LUT blocks that reside at the model’s root level. It also displays any subsystems that contain LUT blocks. Clicking the expand button (+) to the left of the subsystem’s name expands the tree to show the LUT blocks in that subsystem. The expanded view also shows any subsystems in the expanded subsystem. You can continue expanding subsystem nodes in this manner to display LUT blocks at any level in the model hierarchy. Clicking any LUT block in the LUT block tree view displays the block’s look-up table in the right hand pane, allowing you to edit the table (see“Editing Table Values” on page 5-23).

Note If you want to browse the LUT blocks in a model that is not currently open, you can command the LUT Editor to open the model. To do this, select Open from the LUT Editor’s File menu.

5-22

Look-Up Table Editor

Editing Table Values
The Block parameters data table view of the LUT Editor allows you to edit the look-up table of the LUT block currently selected in the adjacent tree view.

The table view displays the entire table if it is one- or two-dimensional or a two-dimensional slice of the table if the table has more than two dimensions (see “Displaying N-D Tables” on page 5-24). To change any of the displayed values, double-click the value. The LUT Editor replaces the value with an edit field containing the value. Edit the value, then press Return or click outside the field to confirm the change. The LUT Editor records your changes in a copy of the table that it maintains. To update the copy maintained by the LUT block itself, select Update block data from the LUT Editor’s File menu. To restore the LUT Editor ‘s copy to the values stored in the block, select Reload block data from the File menu.

5-23

5

Working with Blocks

Displaying N-D Tables
If the look-up table of the LUT block currently selected in the LUT Editor’s tree view has more than two dimensions, the editor’s table view displays a two-dimensional slice of the table.

The n-D Data Dimension Selector beneath the table specifies which slice currently appears and allows you to select another slice. The selector consists of a 4-by-N array of controls where N is the number of dimensions in the look-up table. Each column corresponds to a dimension of the look-up table. The first column corresponds to the first dimension of the table, the second column to the second dimension of the table, and so on. The top row of the selector array displays the size of each dimension. The remaining rows specify which dimensions of the table correspond to the row and column axes of the slice and the indices that select the slice from the remaining dimensions. To select another slice of the table, click the Select row axis and Select column axis radio buttons in the columns that correspond to the dimensions that you want to view. Then select the indexes of the slice from the pop-up index lists in the remaining columns.

5-24

Look-Up Table Editor

For example, the following selector displays slice (:,: ,1,7) of a 4-D table.

Plotting LUT Tables
Select Linear or Mesh from the Plot menu of the LUT Editor to display a linear or mesh plot of the table or table slice currently displayed in the editor’s table view.

Linear

Mesh

5-25

5

Working with Blocks

Editing Custom LUT Blocks
You can use the LUT Editor to edit custom look-up table blocks that you or others have created. To do this, you must first configure the LUT Editor to recognize the custom LUT blocks in your model. Once you have configured the LUT Editor to recognize the custom blocks, you can edit them as if they were standard blocks. To configure the LUT editor to recognize custom LUT blocks, select Configure from the editor’s File menu. The Look-Up Table Blocks Type Configuration dialog box appears.

By default the dialog box displays a table of the types of LUT blocks that the LUT Editor currently recognizes. By default these are the standard Simulink LUT blocks. Each row of the table displays key attributes of a LUT block type.

Adding a Custom LUT Type
To add a custom block to the list of recognized types,
1 Select the Add button on the dialog box.

A new row appears at the bottom of the block type table.

5-26

Look-Up Table Editor

2 Enter information for the custom block in the new row under the following

headings.
Field Name Description

Block Type Mask Type Breakpoint Name Table Name Number of dimensions Explicit Dimensions
3 Select OK.

Block type of the custom LUT block. The block type is the value of the block’s BlockType parameter. Mask type in this field. The mask type is the value of the block’s MaskType parameter. Names of the custom LUT block’s parameters that store its breakpoints. Name of the block parameter that stores the custom block’s look-up table. Leave empty. Leave empty.

Removing Custom LUT Types
To remove a custom LUT type from the list of types recognized by the LUT Editor, select the custom type’s entry in the table in the Look-Up Table Blocks Type Configuration dialog box. Then select Remove. To remove all custom LUT types, check the check box labeled Use Simulink default look-up table blocks list at the top of the dialog box.

5-27

5

Working with Blocks

Working with Block Libraries
Libraries enable users to copy blocks into their models from external libraries and automatically update the copied blocks when the source blocks change. Using libraries allows users who develop their own block libraries, or who use those provided by others (such as blocksets), to ensure that their models automatically include the most recent versions of these blocks.

Terminology
It is important to understand the terminology used with this feature. Library – A collection of library blocks. A library must be explicitly created using New Library from the File menu. Library block – A block in a library. Reference block – A copy of a library block. Link – The connection between the reference block and its library block that allows Simulink to update the reference block when the library block changes. Copy – The operation that creates a reference block from either a library block or another reference block. This figure illustrates this terminology.
link copy

library block Library (Source)

reference block

Model or Library (Destination)

Simulink Block Library
Simulink comes with a library of standard blocks called the Simulink block library. See “Starting Simulink” on page 3-2 for information on displaying and using this library.

5-28

Working with Block Libraries

Creating a Library
To create a library, select Library from the New submenu of the File menu. Simulink displays a new window, labeled Library: untitled. If an untitled window already appears, a sequence number is appended. You can create a library from the command line using this command:
new_system('newlib', 'Library')

This command creates a new library named 'newlib'. To display the library, use the open_system command. These commands are described in “Model Construction Commands” in the online Simulink reference. The library must be named (saved) before you can copy blocks from it. See “Adding Libraries to the Library Browser” on page 5-37 for information on how to point the Library Browser to your new library.

Modifying a Library
When you open a library, it is automatically locked and you cannot modify its contents. To unlock the library, select Unlock Library from the Edit menu. Closing the library window locks the library.

Creating a Library Link
To create a link to a library block in a model, copy the block’s icon from the library to the model (see “Copying and Moving Blocks from One Window to Another” on page 5-4) or by dragging the block from the Library Browser (see “Browsing Block Libraries” on page 5-35) into the model window. When you copy a library block into a model or another library, Simulink creates a link to the library block. The reference block is a copy of the library block. You can change the values of the reference block’s parameters but you cannot mask the block or, if it is masked, edit the mask. Also, you cannot set callback parameters for a reference block. If the link is to a subsystem, you can modify the contents of the reference subsystem (see “Modifying a Linked Subsystem” on page 5-30). The library and reference blocks are linked by name; that is, the reference block is linked to the specific block and library whose names are in effect at the time the copy is made.

5-29

5

Working with Blocks

If Simulink is unable to find either the library block or the source library on your MATLAB path when it attempts to update the reference block, the link becomes unresolved. Simulink issues an error message and displays these blocks using red dashed lines. The error message is
Failed to find block "source-block-name" in library "source-library-name" referenced by block "reference-block-path".

The unresolved reference block is displayed like this (colored red).

To fix a bad link, you must do one of the following: • Delete the unlinked reference block and copy the library block back into your model. • Add the directory that contains the required library to the MATLAB path and select Update Diagram from the Edit menu. • Double-click the reference block. On the dialog box that appears, correct the pathname and click Apply or Close.

Disabling Library Links
Simulink allows you to disable linked blocks in a model. Simulink ignores disabled links when simulating a model. To disable a link, select the link, choose Link options from the model window’s Edit or context menu, then choose Disable link. To restore a disabled link, choose Restore link from the Link Options menu.

Modifying a Linked Subsystem
Simulink allows you to modify subsystems that are library links. If your modifications alter the structure of the subsystem, you must disable the link from the reference block to the library block. If you attempt to modify the structure of a subsystem link, Simulink prompts you to disable the link. Examples of structural modifications include adding or deleting a block or line

5-30

Working with Block Libraries

or changing the number of ports on a block. Examples of nonstructural changes include changes to parameter values that do not affect the structure of the subsystem.

Propagating Link Modifications
Simulink allows a model to have active links with nonstructural but not structural changes. If you restore a link that has structural changes, Simulink prompts you to either propagate or discard the changes. If you choose to propagate the changes, Simulink updates the library block with the changes made in the reference block. If you choose to discard the changes, Simulink replaces the modified reference block with the original library block. In either case, the end result is that the reference block is an exact copy of the library block. If you restore a link with nonstructural changes, Simulink enables the link without prompting you to propagate or discard the changes. If you want to propagate or discard the changes at a later time, select the reference block, choose Link options from the model window’s Edit or context menu, then choose Propagate/Discard changes. If you want to view the nonstructural parameter differences between a reference block and its corresponding library block, choose View changes from the Link options menu.

Updating a Linked Block
Simulink updates out-of-date reference blocks in a model or library at these times: • When the model or library is loaded • When you select Update Diagram from the Edit menu or run the simulation • When you query the LinkStatus parameter of a block, using the get_param command (see “Library Link Status” on page 5-33) • When you use the find_system command

Breaking a Link to a Library Block
You can break the link between a reference block and its library block to cause the reference block to become a simple copy of the library block, unlinked to the library block. Changes to the library block no longer affect the block. Breaking

5-31

5

Working with Blocks

links to library blocks may enable you to transport a model as a stand-alone model, without the libraries. To break the link between a reference block and its library block, first disable the block. Then select the block and choose Break Library Link from the Link options menu. You can also break the link between a reference block and its library block from the command line by changing the value of the LinkStatus parameter to 'none' using this command:
set_param('refblock', 'LinkStatus', 'none')

You can save a system and break all links between reference blocks and library blocks using this command:
save_system('sys', 'newname', 'BreakLinks')

Note Breaking library links in a model does not guarantee that you can run the model stand-alone, especially if the model includes blocks from third-party libraries or optional Simulink blocksets. It is possible that a library block invokes functions supplied with the library and hence can run only if the library is installed on the system running the model. Further, breaking a link can cause a model to fail when you install a new version of the library on a system. For example, suppose a block invokes a function that is supplied with the library. Now suppose that a new version of the library eliminates the function. Running a model with an unlinked copy of the block results in invocation of a now nonexistent function, causing the simulation to fail. To avoid such problems, you should generally avoid breaking links to third-party libraries and optional Simulink blocksets.

Finding the Library Block for a Reference Block
To find the source library and block linked to a reference block, select the reference block, then choose Go To Library Link from the Link options submenu of the model window’s Edit or context menu. If the library is open, Simulink selects and highlights the library block and makes the source library the active window. If the library is not open, Simulink opens it and selects the library block.

5-32

Working with Block Libraries

Library Link Status
All blocks have a LinkStatus parameter that indicates whether the block is a reference block. The parameter can have these values.
Status none resolved unresolved implicit inactive Description

Block is not a reference block. Link is resolved. Link is unresolved. Block is within a linked block. Link is disabled.

Displaying Library Links
Simulink optionally displays an arrow in the bottom left corner of each icon that represents a library link in a model.
library link

This arrow allows you to tell at a glance whether an icon represents a link to a library block or a local instance of a block. To enable display of library links, select Library Link Display from the model window’s Format menu and then select either User (displays only links to user libraries) or All (displays all links).

5-33

5

Working with Blocks

The color of the link arrow indicates the status of the link.
Color Status

Black Grey Red

Active link Inactive link Active and modified

5-34

Working with Block Libraries

Getting Information About Library Blocks
Use the libinfo command to get information about reference blocks in a system. The format for the command is
libdata = libinfo(sys)

where sys is the name of the system. The command returns a structure of size n-by-1, where n is the number of library blocks in sys. Each element of the structure has four fields: • Block, the block path • Library, the library name • ReferenceBlock, the reference block path • LinkStatus, the link status, either 'resolved' or 'unresolved'

Browsing Block Libraries
The Library Browser lets you quickly locate and copy library blocks into a model. To display the Library Browser, click the Library Browser button in the toolbar of the MATLAB desktop or Simulink model window or enter simulink at the MATLAB command line.

Note The Library Browser is available only on Microsoft Windows platforms.

5-35

5

Working with Blocks

The Library Browser contains three panes.

Documentation Pane

Tree Pane

Icon Pane

The tree pane displays all the block libraries installed on your system. The icon pane displays the icons of the blocks that reside in the library currently selected in the tree pane. The documentation pane displays documentation for the block selected in the icon pane. You can locate blocks either by navigating the Library Browser’s library tree or by using the Library Browser’s search facility.

5-36

Working with Block Libraries

Navigating the Library Tree
The library tree displays a list of all the block libraries installed on the system. You can view or hide the contents of libraries by expanding or collapsing the tree using the mouse or keyboard. To expand/collapse the tree, click the +/buttons next to library entries or select an entry and press the +/- or right/left arrow key on your keyboard. Use the up/down arrow keys to move up or down the tree.

Searching Libraries
To find a particular block, enter the block’s name in the edit field next to the Library Browser’s Find button, then click the Find button.

Opening a Library
To open a library, right-click the library’s entry in the browser. Simulink displays an Open Library button. Select the Open Library button to open the library.

Creating and Opening Models
To create a model, select the New button on the Library Browser’s toolbar. To open an existing model, select the Open button on the toolbar.

Copying Blocks
To copy a block from the Library Browser into a model, select the block in the browser, drag the selected block into the model window, and drop it where you want to create the copy.

Displaying Help on a Block
To display help on a block, right-click the block in the Library Browser and select the button that subsequently pops up.

Pinning the Library Browser
To keep the Library Browser above all other windows on your desktop, select the PushPin button on the browser’s toolbar.

Adding Libraries to the Library Browser
If you want a library that you have created to appear in the Library Browser, you must create an slblocks.m file that describes the library in the directory

5-37

5

Working with Blocks

that contains it. The easiest way to create an slblocks.m file is to use an existing slblocks.m file as a template. You can find all existing slblocks.m files on your system by typing
which('slblocks.m', '-all')

at the MATLAB command prompt. Copy any of the displayed files to your library’s directory. Then open the copy, edit it, following the instructions included in the file, and save the result. Finally, add your library’s directory to the MATLAB path, if necessary. The next time you open the Library Browser, your library should appear among the libraries displayed in the browser.

5-38

6
Working with Signals
This section describes how to create and use Simulink signals. Signal Basics (p. 6-2) Explores key signal concepts, include signal data types, signal buses, virtual signals, signal dimensions, and signal properties. How to create and use signals whose values are complex numbers. How to check whether blocks can accept the signals you have created. How to display signal characteristics on a block diagram. How to create and use interchangeable groups of signals, for example, to test a model.

Working with Complex Signals (p. 6-14) Checking Signal Connections (p. 6-15) Displaying Signals (p. 6-16) Working with Signal Groups (p. 6-20)

6

Working with Signals

Signal Basics
This section provides an overview of Simulink signals and explains how to specify, display, and check the validity of signal connections.

About Signals
Signals are the streams of values that appear at the outputs of Simulink blocks when a model is simulated. It is useful to think of signals as traveling along the lines that connect the blocks in a model diagram. But note that the lines in a Simulink model represent logical, not physical, connections among blocks. Thus, the analogy between Simulink signals and electrical signals is not complete. Electrical signals, for example, take time to cross a wire. The output of a Simulink block, by contrast, appears instantaneously at the input of the block to which it is connected.

Signal Dimensions
Simulink blocks can output one- or two-dimensional signals. A one-dimensional (1-D) signal consists of a stream of one-dimensional arrays output at a frequency of one array (vector) per simulation time step. A two-dimensional (2-D) signal consists of a stream of two-dimensional arrays emitted at a frequency of one 2-D array (matrix) per block sample time. The Simulink user interface and documentation generally refer to 1-D signals as vectors and 2-D signals as matrices. A one-element array is frequently referred to as a scalar. A row vector is a 2-D array that has one row. A column vector is a 2-D array that has one column. Simulink blocks vary in the dimensionality of the signals they can accept or output during simulation. Some blocks can accept or output signals of any dimensions. Some can accept or output only scalar or vector signals. To determine the signal dimensionality of a particular block, see the block’s description in “Simulink Blocks” in the online Simulink Help. See “Determining Output Signal Dimensions” on page 6-7 for information on what determines the dimensions of output signals for blocks that can output nonscalar signals.

Signal Data Types
Data type refers to the format used to represent signal values internally. The data type of Simulink signals is double by default. However, you can create

6-2

Signal Basics

signals of other data types. Simulink supports the same range of data types as MATLAB. See “Working with Data Types” on page 7-2 for more information.

Complex Signals
The values of Simulink signals can be complex numbers. A signal whose values are complex numbers is called a complex signal. See “Working with Complex Signals” on page 6-14 for information on creating and manipulating complex signals.

Virtual Signals
A virtual signal is a signal that represents another signal graphically. Virtual blocks, such as a Bus Creator or Subsystem block (see “Virtual Blocks” on page 5-2), generate virtual signals. Like virtual blocks, virtual signals allow you to simplify your model graphically. For example, using a Bus Creator block, you can reduce a large number of nonvirtual signals (i.e., signals originating from nonvirtual blocks) to a single virtual signal, thereby making your model easier to understand. You can think of a virtual signal as a tie wrap that bundles together a number of signals. Virtual signals are purely graphical entities. They have no mathematical or physical significance. Simulink ignores them when simulating a model. Whenever you run or update a model, Simulink determines the nonvirtual signal(s) represented by the model’s virtual signal(s), using a procedure known as signal propagation. When running the model, Simulink uses the corresponding nonvirtual signal(s), determined via signal propagation, to drive the blocks to which the virtual signals are connected. Consider, for example, the following model.

6-3

6

Working with Signals

The signals driving Gain blocks G1 and G2 are virtual signals corresponding to signals s2 and s1, respectively. Simulink determines this automatically whenever you update or simulate the model. The Show Propagated Signals option (see “Signal Properties Dialog Box” on page 6-11) displays the nonvirtual signals represented by virtual signals in the labels of the virtual signals.

Note Virtual signals can represent virtual as well as nonvirtual signals. For example, you can use a Bus Creator block to combine multiple virtual and nonvirtual signals into a single virtual signal. If during signal propagation Simulink determines that a component of a virtual signal is itself virtual, Simulink determines its nonvirtual components using signal propagation. This process continues until Simulink has determined all nonvirtual components of a virtual signal.

Control Signals
A control signal is a signal used by one block to initiate execution of another block, e.g., a function-call or action subsystem. When you update or start simulation of a block diagram, Simulink uses a dash-dot pattern to redraw

6-4

Signal Basics

lines representing the diagram’s control signals as illustrated in the following example.

Control signal

Signal Buses
You can use Bus Creator and Bus Selector blocks to create signal buses.
Signal Bus

A signal bus is a virtual signal that represents a set of signals. It is analogous to a bundle of wires held together by tie wraps. Simulink uses a special line style to display signal buses. If you select Signal Dimensions from the Format menu, Simulink displays the number of signal components carried by the bus.

6-5

6

Working with Signals

Signal Glossary
The following table summarizes the terminology used to describe signals in the Simulink user interface and documentation.
Term Meaning

Complex signal Data type

Signal whose values are complex numbers. Format used to represent signal values internally. See “Working with Data Types” on page 7-2 for more information. Two-dimensional signal array. Signal whose values are real (as opposed to complex) numbers. One-element array, i.e., a one-element, 1-D or 2-D array. Signal created by a Mux or Demux block. Process used by Simulink to determine attributes of signals and blocks, such as data types, labels, sample time, dimensionality, and so on, that are determined by connectivity. Number of elements that a signal contains. The size of a matrix (2-D) signal is generally expressed as M-by-N where M is the number of columns and N is the number of rows making up the signal. One-dimensional signal array. Signal that represents another signal or set of signals. Size of a vector signal.

Matrix Real signal Scalar Signal bus Signal propagation

Size

Vector Virtual signal Width

6-6

Signal Basics

Determining Output Signal Dimensions
If a block can emit nonscalar signals, the dimensions of the signals that the block outputs depend on the block’s parameters, if the block is a source block; otherwise, the output dimensions depend on the dimensions of the block’s input and parameters.

Determining the Output Dimensions of Source Blocks
A source block is a block that has no inputs. Examples of source blocks include the Constant block and the Sine Wave block. See the “Sources Library” table in the online Simulink Help for a complete listing of Simulink source blocks. The output dimensions of a source block are the same as those of its output value parameters if the block’s Interpret Vector Parameters as 1-D parameter is off (i.e., not selected in the block’s parameter dialog box). If the Interpret Vector Parameters as 1-D parameter is on, the output dimensions equal the output value parameter dimensions unless the parameter dimensions are N-by-1 or 1-by-N. In the latter case, the block outputs a vector signal of width N. As an example of how a source block’s output value parameter(s) and Interpret Vector Parameters as 1-D parameter determine the dimensionality of its output, consider the Constant block. This block outputs a constant signal equal to its Constant value parameter. The following table illustrates how the dimensionality of the Constant value parameter and the setting of the Interpret Vector Parameters as 1-D parameter determine the dimensionality of the block’s output.
Constant Value Interpret Vector Parameters as 1-D Output

2-D scalar 2-D scalar 1-by-N matrix 1-by-N matrix N-by-1 matrix N-by-1 matrix

off on off on off on

2-D scalar 1-D scalar 1-by-N matrix N-element vector N-by-1 matrix N-element vector

6-7

6

Working with Signals

Constant Value

Interpret Vector Parameters as 1-D

Output

M-by-N matrix M-by-N matrix

off on

M-by-N matrix M-by-N matrix

Simulink source blocks allow you to specify the dimensions of the signals that they output. You can therefore use them to introduce signals of various dimensions into your model.

Determining the Output Dimensions of Nonsource Blocks
If a block has inputs, the dimensions of its outputs are, after scalar expansion, the same as those of its inputs. (All inputs must have the same dimensions, as discussed in the next section.)

Signal and Parameter Dimension Rules
When creating a Simulink model, you must observe the following rules regarding signal and parameter dimensions.

Input Signal Dimension Rule
All nonscalar inputs to a block must have the same dimensions. A block can have a mix of scalar and nonscalar inputs as long as all the nonscalar inputs have the same dimensions. Simulink expands the scalar inputs to have the same dimensions as the nonscalar inputs (see “Scalar Expansion of Inputs” on page 6-9), thus preserving the general rule.

Block Parameter Dimension Rule
In general, a block’s parameters must have the same dimensions as the corresponding inputs. Two seeming exceptions exist to this general rule: • A block can have scalar parameters corresponding to nonscalar inputs. In this case, Simulink expands a scalar parameter to have the same dimensions as the corresponding input (see “Scalar Expansion of Parameters” on page 6-10), thus preserving the general rule.

6-8

Signal Basics

• If an input is a vector, the corresponding parameter can be either an N-by-1 or a 1-by-N matrix. In this case, Simulink applies the N matrix elements to the corresponding elements of the input vector. This exception allows use of MATLAB row or column vectors, which are actually 1-by-N or N-by-1 matrices, respectively, to specify parameters that apply to vector inputs.

Vector or Matrix Input Conversion Rules
Simulink converts vectors to row or column matrices and row or column matrices to vectors under the following circumstances: • If a vector signal is connected to an input that requires a matrix, Simulink converts the vector to a one-row or one-column matrix. • If a one-column or one-row matrix is connected to an input that requires a vector, Simulink converts the matrix to a vector. • If the inputs to a block consist of a mixture of vectors and matrices and the matrix inputs all have one column or one row, Simulink converts the vectors to matrices having one column or one row, respectively.

Note You can configure Simulink to display a warning or error message if a vector or matrix conversion occurs during a simulation. See “Configuration options” on page 10-27 for more information.

Scalar Expansion of Inputs and Parameters
Scalar expansion is the conversion of a scalar value into a nonscalar array of the same dimensions. Many Simulink blocks support scalar expansion of inputs and parameters. Block descriptions in the “Simulink Blocks” section in the online Simulink Help indicate whether Simulink applies scalar expansion to a block’s inputs and parameters.

Scalar Expansion of Inputs
Scalar expansion of inputs refers to the expansion of scalar inputs to match the dimensions of other nonscalar inputs or nonscalar parameters.When the input to a block is a mix of scalar and nonscalar signals, Simulink expands the scalar inputs into nonscalar signals having the same dimensions as the other

6-9

6

Working with Signals

nonscalar inputs. The elements of an expanded signal equal the value of the scalar from which the signal was expanded. The following model illustrates scalar expansion of inputs. This model adds scalar and vector inputs. The input from block Constant1 is scalar expanded to match the size of the vector input from the Constant block. The input is expanded to the vector [3 3 3].

When a block’s output is a function of a parameter and the parameter is nonscalar, Simulink expands a scalar input to match the dimensions of the parameter. For example, Simulink expands a scalar input to a Gain block to match the dimensions of a nonscalar gain parameter.

Scalar Expansion of Parameters
If a block has a nonscalar input and a corresponding parameter is a scalar, Simulink expands the scalar parameter to have the same number of elements as the input. Each element of the expanded parameter equals the value of the original scalar. Simulink then applies each element of the expanded parameter to the corresponding input element. This example shows that a scalar parameter (the Gain) is expanded to a vector of identically valued elements to match the size of the block input, a three-element vector.

Setting Signal Properties
Signals have properties. Use the Signal Properties dialog box to view or set a signal’s properties. To display the dialog box, select the line that carries the signal and choose Signal Properties from the Simulink Edit menu.

6-10

Signal Basics

Signal Properties Dialog Box
The Signal Properties dialog box lets you view and edit signal properties.

The dialog box includes the following controls.

Signal name
Name of signal.

Show propagated signals
Note This option appears only for signals that originate from a virtual block other than a Bus Selector block.

6-11

6

Working with Signals

Show propagated signal names. You can select one of the following options:
Option off Description

Do not display signals represented by a virtual signal in the signal’s label. Display the virtual and nonvirtual signals represented by a virtual signal in the signal’s label. For example, suppose that virtual signal s1 represents a nonvirtual signal s2 and a virtual signal s3. If this option is selected, s1’s label is s1<s2, s3>. Display all the nonvirtual signals that a virtual signal represents either directly or indirectly. For example, suppose that virtual signal s1 represents a nonvirtual signal s2 and a virtual signal s3 and virtual signal s3 represents nonvirtual signals s4 and s5. If this option is selected, s1’s label is s1<s2,s4,s5>.

on

all

Description
Enter a description of the signal in this field.

Document link
Enter a MATLAB expression in the field that displays documentation for the signal. To display the documentation, click “Document Link.” For example, entering the expression
web(['file:///' which('foo_signal.html')])

in the field causes MATLAB’s default Web browser to display foo_signal.html when you click the field’s label.

Displayable (Test Point)
Select this option to indicate that the signal can be displayed during simulation.

6-12

Signal Basics

Note The next two controls set properties used by the Real-Time Workshop to generate code from the model. You can ignore them if you are not going to generate code from the model.

RTW storage class
Select the storage class of this signal from the list. See the Real-Time Workshop User’s Guide for an explanation of the listed options.

Note Select Storage class from the Simulink Format menu to display the storage class of the signal on the block diagram.

RTW storage type qualifier
Select the storage type of this signal from the list. See the Real-Time Workshop User’s Guide for more information.

6-13

6

Working with Signals

Working with Complex Signals
By default, the values of Simulink signals are real numbers. However, models can create and manipulate signals that have complex numbers as values. You can introduce a complex-valued signal into a model in the following ways: • Load complex-valued signal data from the MATLAB workspace into the model via a root-level inport. • Create a Constant block in your model and set its value to a complex number. • Create real signals corresponding to the real and imaginary parts of a complex signal, then combine the parts into a complex signal, using the Real-Imag to Complex conversion block. You can manipulate complex signals via blocks that accept them. If you are not sure whether a block accepts complex signals, see the documentation for the block in the “Simulink blocks” section of the Simulink online documentation.

6-14

Checking Signal Connections

Checking Signal Connections
Many Simulink blocks have limitations on the types of signals they can accept. Before simulating a model, Simulink checks all blocks to ensure that they can accommodate the types of signals output by the ports to which they are connected. If any incompatibilities exist, Simulink reports an error and terminates the simulation. To detect such errors before running a simulation, choose Update Diagram from the Simulink Edit menu. Simulink reports any invalid connections found in the process of updating the diagram.

6-15

6

Working with Signals

Displaying Signals
A model window’s Format menu and its model context (right-click) menu offer the following options for displaying signal attributes.

Wide nonscalar lines
Draws lines that carry vector or matrix signals wider than lines that carry scalar signals.

Signal dimensions
Display the dimensions of nonscalar signals next to the line that carries the signal.

6-16

Displaying Signals

The format of the display depends on whether the line represents a single signal or a bus. If the line represents a single vector signal, Simulink displays the width of the signal. If the line represents a single matrix signal, Simulink displays its dimensions as [N1xN2] where Ni is the size of the ith dimension of the signal. If the line represents a bus carrying signals of the same data type, Simulink displays N{M} where N is the number of signals carried by the bus and M is the total number of signal elements carried by the bus. If the bus carries signals of different data types, Simulink displays only the total number of signal elements {M}.

Port data types
Displays the data type of a signal next to the output port that emits the signal.

The notation (c) following the data type of a signal indicates that the signal is complex.

Signal Names
You can assign names to signals by • Editing the signal’s label • Editing the Name field of the signal’s property dialog (see “Signal Properties Dialog Box” on page 6-11) • Setting the name parameter of the port or line that represents the signal, e.g.,
p = get_param(gcb, 'PortHandles') l = get_param(p.Inport, 'Line') set_param(l, 'Name', 's9')

6-17

6

Working with Signals

Signal Labels
A signal’s label displays the signal’s name. A virtual signal’s label optionally displays the signals it represents in angle brackets. You can edit a signal’s label, thereby changing the signal’s name. To create a signal label (and thereby name the signal), double-click the line that represents the signal. The text cursor appears. Enter the name and click anywhere outside the label to exit label editing mode.

Note When you create a signal label, take care to double-click the line. If you click in an unoccupied area close to the line, you will create a model annotation instead.

Labels can appear above or below horizontal lines or line segments, and left or right of vertical lines or line segments. Labels can appear at either end, at the center, or in any combination of these locations. To move a signal label, drag the label to a new location on the line. When you release the mouse button, the label fixes its position near the line. To copy a signal label, hold down the Ctrl key while dragging the label to another location on the line. When you release the mouse button, the label appears in both the original and the new locations. To edit an existing signal label, select it: • To replace the label, click the label, double-click or drag the cursor to select the entire label, then enter the new label. • To insert characters, click between two characters to position the insertion point, then insert text. • To replace characters, drag the mouse to select a range of text to replace, then enter the new text. To delete all occurrences of a signal label, delete all the characters in the label. When you click outside the label, the labels are deleted. To delete a single occurrence of the label, hold down the Shift key while you select the label, then press the Delete or Backspace key. To change the font of a signal label, select the signal, choose Font from the Format menu, then select a font from the Set Font dialog box.

6-18

Displaying Signals

Displaying Signals Represented by Virtual Signals
To display the signal(s) represented by a virtual signal, click the signal’s label and enter an angle bracket (<) after the signal’s name. (If the signal has no name, simply enter the angle bracket.) Click anywhere outside the signal’s label. Simulink exits label editing mode and displays the signals represented by the virtual signal in brackets in the label. You can also display the signals represented by a virtual signal by selecting the Show Propagated Signals option on the signal’s property dialog (see “Signal Properties Dialog Box” on page 6-11).

6-19

6

Working with Signals

Working with Signal Groups
The Signal Builder block allows you to create interchangeable groups of signal sources and quickly switch the groups into and out of a model. Signal groups can greatly facilitate testing a model, especially when used in conjunction with Simulink assertion blocks and the optional Model Coverage Tool.

Creating a Signal Group Set
To create an interchangeable set of signal groups:
1 Drag an instance of the Signal Builder block from the Simulink Sources

library and drop it into your model.

Default Waveform

By default the block represents a single signal group containing a single signal source that outputs a square wave pulse.
2 Use the block’s signal editor (see “The Signal Builder Dialog Box” on

page 6-21) to create additional signal groups, add signals to the signal groups, modify existing signals and signal groups, and select the signal group that the block outputs.
3 Connect the output of the block to your diagram.

The block displays an output port for each signal that the block can output. You can create as many Signal Builder blocks as you like in a model, each representing a distinct set of interchangeable groups of signal sources. See

6-20

Working with Signal Groups

“Simulating with Signal Groups” on page 6-30 for information on using signal groups in a model.

The Signal Builder Dialog Box
The Signal Builder block’s dialog box allows you to define the waveforms of the signals output by the block. You can specify any waveform that is piecewise linear. To open the dialog box, double-click the block’s icon. The Signal Builder dialog box appears.

Group Panes

Signal List

Help Area

Signal Name and Index

Waveform Coordinates

Selection Status Area

The Signal Builder dialog box allows you to create and modify signal groups represented by a Signal Builder block. The Signal Builder dialog box includes the following controls.

6-21

6

Working with Signals

Group Panes
Displays the set of interchangeable signal source groups represented by the block. The pane for each group displays an editable representation of the waveform of each signal that the group contains. The name of the group appears on the pane’s tab. Only one pane is visible at a time. To display a group that is invisible, select the tab that contains its name. The block outputs the group of signals whose pane is currently visible.

Signal Axes
The signals appear on separate axes that share a common time range (see “Signal Builder Time Range” on page 6-29). This allows you to easily compare the relative timing of changes in each signal. The Signal Builder automatically scales the range of each axis to accommodate the signal that it displays. Use the Signal Builder’s Axes menu to change the time (T) and amplitude (Y) ranges of the selected axis.

Signal List
Displays the names and visibility (see “Editing Signals” on page 6-23) of the signals that belong to the currently selected signal group. Clicking an entry in the list selects the signal. Double-clicking a signal’s entry in the list hides or displays the signal’s waveform on the group pane.

Selection Status Area
Displays the name of the currently selected signal and the index of the currently selected waveform segment or point.

Waveform Coordinates
Displays the coordinates of the currently selected waveform segment or point. You can change the coordinates by editing the displayed values (see “Editing Waveforms” on page 6-25).

Name
Name of the currently selected signal. You can change the name of a signal by editing this field (see “Renaming a Signal” on page 6-24).

6-22

Working with Signal Groups

Index
Index of the currently selected signal. The index indicates the output port at which the signal appears. An index of 1 indicates the topmost output port, 2 indicates the second port from the top, and so on. You can change the index of a signal by editing this field (see “Changing a Signal’s Index” on page 6-25).

Help Area
Displays context-sensitive tips on using Signal Builder dialog box features.

Editing Signal Groups
The Signal Builder dialog box allows you to create, rename, move, and delete signal groups from the set of groups represented by a Signal Builder block.

Creating and Deleting Signal Groups
To create a signal group, you must copy an existing signal group and then modify it to suit your needs. To copy an existing signal group, select its tab and then select Copy from the Signal Builder’s Group menu. To delete a group, select its tab and then select Delete from the Group menu.

Renaming Signal Groups
To rename a signal group, select the group’s tab and then select Rename from the Signal Builder’s Group menu. A dialog box appears. Edit the existing name in the dialog box or enter a new name. Click OK.

Moving Signal Groups
To reposition a group in the stack of group panes, select the pane and then select Move right from the Signal Builder’s Group menu to move the group lower in the stack or Move left to move the pane higher in the stack.

Editing Signals
The Signal Builder dialog box allows you to create, cut and paste, hide, and delete signals from signal groups.

Creating Signals
To create a signal in the currently selected signal group, select New from the Signal Builder’s Signal menu. A menu of waveforms appears. The menu

6-23

6

Working with Signals

includes a set of standard waveforms (Constant, Step, etc.) and a Custom waveform option. Select one of the waveforms. If you select a standard waveform, the Signal Builder adds a signal having that waveform to the currently selected group. If you select Custom, a custom waveform dialog box appears.

The dialog box allows you to specify a custom piecewise linear waveform to be added to the groups defined by the Signal Builder block. Enter the custom waveform’s time coordinates in the T Values field and the corresponding signal amplitudes in the Y Values field. The entries in either field can be any MATLAB expression that evaluates to a vector. The resulting vectors must be of equal length. Select OK. The Signal Builder adds a signal having the specified waveform to the currently selected group.

Cutting and Pasting Signals
To cut or copy a signal from one group and paste it into another group:
1 Select the signal you want to cut or copy. 2 Select Cut or Copy from the Signal Builder’s Edit menu or the

corresponding button from the toolbar.
3 Select the group into which you want to paste the signal. 4 Select Paste from the Signal Builder’s Edit menu or the corresponding

button on the toolbar.

Renaming a Signal
To rename a signal, select the signal and choose Rename from the Signal Builder’s Signal menu. A dialog box appears with an edit field that displays the signal’s current name. Edit or replace the current name with a new name. Click OK. Or edit the signal’s name in the Name field in the lower left corner of the Signal Builder dialog box.

6-24

Working with Signal Groups

Changing a Signal’s Index
To change a signal’s index, select the signal and choose Change Index from the Signal Builder’s Signal menu. A dialog box appears with an edit field containing the signal’s existing index. Edit the field and select OK. Or select an index from the Index list in the lower left corner of the Signal Builder window.

Hiding Signals
By default, the Signal Builder dialog box displays the waveforms of a group’s signals in the group’s tabbed pane. To hide a waveform, select the waveform and then select Hide from the Signal Builder’s Signal menu. To redisplay a hidden waveform, select the signal’s Group pane, then select Show from the Signal Builder’s Signal menu to display a menu of hidden signals. Select the signal from the menu. Alternatively, you can hide and redisplay a hidden waveform by double-clicking its name in the Signal Builder’s signal list (see “Signal List” on page 6-22).

Editing Waveforms
The Signal Builder dialog box allows you to change the shape, color, and line style and thickness of the signal waveforms output by a signal group.

Reshaping a Waveform
The Signal Builder dialog box allows you to change the shape of a waveform by selecting and dragging its line segments and points or by editing the coordinates of segments or points.
Selecting a Waveform. To select a waveform, left-click the mouse on any point on

the waveform.

6-25

6

Working with Signals

The Signal Builder displays the waveform’s points to indicate that the waveform is selected.

To deselect a waveform, left-click any point on the waveform graph that is not on the waveform itself or press the Esc key.
Selecting points. To select a point of a waveform, first select the waveform. Then

position the mouse cursor over the point. The cursor changes shape to indicate that it is over a point.

Left-click the point with the mouse. The Signal Builder draws a circle around the point to indicate that it is selected.

To deselect the point, press the Esc key.

6-26

Working with Signal Groups

Selecting Segments. To select a line segment, first select the waveform that contains it. Then left-click the segment. The Signal Builder thickens the segment to indicate that it is selected.

To deselect the segment, press the Esc key.
Dragging Segments. To drag a line segment to a new location, position the mouse

cursor over the line segment. The mouse cursor changes shape to show the direction in which you can drag the segment.

Drag

Drag

Press the left mouse button and drag the segment in the direction indicated to the desired location.
Dragging points. To drag a point along the signal amplitude (vertical) axis, move the mouse cursor over the point. The cursor changes shape to a circle to indicate that you can drag the point. Drag the point parallel to the x-axis to the desired location. To drag the point along the time (horizontal) axis, press the Shift key while dragging the point. Snap Grid. Each waveform axis contains an invisible snap grid that facilitates precise positioning of waveform points. The origin of the snap grid coincides

6-27

6

Working with Signals

with the origin of the waveform axis. When you drop a point or segment that you have been dragging, the Signal Builder moves the point or the segment’s points to the nearest point or points on the grid, respectively. The Signal Builder’s Axes menu allows you to specify the grid’s horizontal (time) axis and vertical (amplitude) axis spacing independently. The finer the spacing, the more freedom you have in placing points but the harder it is to position points precisely. By default, the grid spacing is 0, which means that you can place points anywhere on the grid; i.e., the grid is effectively off. Use the Axes menu to select the spacing that you prefer.
Inserting and Deleting points. To insert a point, first select the waveform. Then

hold down the Shift key and left-click the waveform at the point where you want to insert the point. To delete a point, select the point and press the Del key.
Editing Point Coordinates. To change the coordinates of a point, first select the point. The Signal Builder displays the current coordinates of the point in the Left Point edit fields at the bottom of the Signal Builder dialog box. To change the amplitude of the selected point, edit or replace the value in the y field with the new value and press Enter. The Signal Builder moves the point to its new location. Similarly edit the value in the t field to change the time of the selected point. Editing Segment Coordinates. To change the coordinates of a segment, first select

the segment. The Signal Builder displays the current coordinates of the endpoints of the segment in the Left Point and Right Point edit fields at the bottom of the Signal Builder dialog box. To change a coordinate, edit the value in its corresponding edit field and press Enter.

Changing the Color of a Waveform
To change the color of a signal waveform, select the waveform and then select Color from the Signal Builder’s Signal menu. The Signal Builder displays the MATLAB color chooser. Choose a new color for the waveform. Click OK.

Changing a Waveform’s Line Style and Thickness
The Signal Builder can display a waveform as a solid, dashed, or dotted line. It uses a solid line by default. To change the line style of a waveform, select the waveform, then select Line style from the Signal Builder’s Signal menu. A menu of line styles pops up. Select a line style from the menu.

6-28

Working with Signal Groups

To change the line thickness of a waveform, select the waveform, then select Line width from the Signal menu. A dialog box appears with the line’s current thickness. Edit the thickness value and click OK.

Signal Builder Time Range
The Signal Builder’s time range determines the span of time over which its output is explicitly defined. By default, the time range runs from 0 to 10 seconds. You can change both the beginning and ending times of a block’s time range (see “Changing a Signal Builder’s Time Range” on page 6-29). If the simulation starts before the start time of a block’s time range, the block extrapolates its initial output from its first two defined outputs. If the simulation runs beyond the block’s time range, the block by default outputs its final defined values for the remainder of the simulation. The Signal Builder’s Simulation Options dialog box allows you to specify other final output options (see “Signal values after final time” on page 6-31 for more information).

Changing a Signal Builder’s Time Range
To change the time range, select Change time range from the Signal Builder’s Axes menu. A dialog box appears.

Edit the Min. time and Max. time fields as necessary to reflect the beginning and ending times of the new time range, respectively. Click OK.

6-29

6

Working with Signals

Exporting Signal Group Data
To export the data that define a Signal Builder block’s signal groups to the MATLAB workspace, select Export to workspace from the block’s File menu. A dialog box appears.

The Signal Builder exports the data by default to a workspace variable named channels. To export to a differently named variable, enter the variable’s name in the Variable name field. Click OK. The Signal Builder exports the data to the workspace as the value of the specified variable. The exported data is an array of structures.

Simulating with Signal Groups
You can use standard simulation commands to run models containing Signal Builder blocks or you can use the Signal Builder’s Run all command (see “Running All Signal Groups” on page 6-30).

Activating a Signal Group
During a simulation, a Signal Builder block always outputs the active signal group. The active signal group is the group selected in the Signal Builder dialog box for that block, if the dialog box is open, otherwise the group that was selected when the dialog box was last closed. To activate a group, open the group’s Signal Builder dialog box and select the group.

Running Different Signal Groups in Succession
The Signal Builder’s toolbar includes the standard Simulink buttons for running a simulation. This facilitates running several different signal groups in succession. For example, you can open the dialog box, select a group, run a simulation, select another group, run a simulation, etc., all from the Signal Builder’s dialog box.

Running All Signal Groups
To run all the signal groups defined by a Signal Builder block, open the block’s dialog box and select the Run all button from the Signal Builder’s toolbar.

6-30

Working with Signal Groups

The Run all command runs a series of simulations, one for each signal group defined by the block. If you have installed the optional Model Coverage Tool on your system, the Run all command configures the tool to collect and save coverage data for each simulation in the MATLAB workspace and display a report of the combined coverage results at the end of the last simulation. This allows you to quickly determine how well a set of signal groups tests your model.

Note To stop a series of simulations started by the Run all command, enter Control-c at the MATLAB command line.

Simulation Options Dialog Box
The Simulation Options dialog box allows you to specify simulation options pertaining to the Signal Builder. To display the dialog box, select Simulation Options from the Signal Builder’s File menu. The dialog box appears.

The dialog box allows you to specify the following options.

Signal values after final time
The setting of this control determines the output of the Signal Builder block if a simulation runs longer than the period defined by the block. The options are • Hold final value Selecting this option causes the Signal Builder block to output the last defined value of each signal in the currently active group for the remainder of the simulation.

6-31

6

Working with Signals

• Extrapolate Selecting this option causes the Signal Builder block to output values extrapolated from the last defined value of each signal in the currently active group for the remainder of the simulation.

• Set to zero Selecting this option causes the Signal Builder block to output zero for the remainder of the simulation.

6-32

Working with Signal Groups

Sample time
Determines whether the Signal Builder block outputs a continuous (the default) or a discrete signal. If you want the block to output a continuous signal, enter 0 in this field. For example, the following display shows the output of a Signal Builder block set to output a continuous Gaussian waveform over a period of 10 seconds.

If you want the block to output a a discrete signal, enter the sample time of the signal in this field. The following example shows the output of a Signal Builder block set to emit a discrete Gaussian waveform having a 0.5 second sample time.

6-33

6

Working with Signals

6-34

7
Working with Data
The following sections explain how to specify the data types of signals and parameters and how to create data objects. Working with Data Types (p. 7-2) Working with Data Objects (p. 7-9) The Simulink Data Explorer (p. 7-27) Associating User Data with Blocks (p. 7-29) How to specify the data types of signals and parameters. How to create data objects and use them as signal and parameter values. How to use the Simulink Data Explorer to inspect the data objects used by a model. How to associate your data with a block.

7

Working with Data

Working with Data Types
The term data type refers to the way in which a computer represents numbers in memory. A data type determines the amount of storage allocated to a number, the method used to encode the number’s value as a pattern of binary digits, and the operations available for manipulating the type. Most computers provide a choice of data types for representing numbers, each with specific advantages in the areas of precision, dynamic range, performance, and memory usage. To enable you to take advantage of data typing to optimize the performance of MATLAB programs, MATLAB allows you to specify the data types of MATLAB variables. Simulink builds on this capability by allowing you to specify the data types of Simulink signals and block parameters. The ability to specify the data types of a model’s signals and block parameters is particularly useful in real-time control applications. For example, it allows a Simulink model to specify the optimal data types to use to represent signals and block parameters in code generated from a model by automatic code-generation tools, such as the Real-Time Workshop available from The MathWorks. By choosing the most appropriate data types for your model’s signals and parameters, you can dramatically increase performance and decrease the size of the code generated from the model. Simulink performs extensive checking before and during a simulation to ensure that your model is typesafe, that is, that code generated from the model will not overflow or underflow and thus produce incorrect results. Simulink models that use Simulink’s default data type (double) are inherently typesafe. Thus, if you never plan to generate code from your model or use a nondefault data type in your models, you can skip the remainder of this section. On the other hand, if you plan to generate code from your models and use nondefault data types, read the remainder of this section carefully, especially the section on data type rules (see “Data Typing Rules” on page 7-5). In that way, you can avoid introducing data type errors that prevent your model from running to completion or simulating at all.

Data Types Supported by Simulink
Simulink supports all built-in MATLAB data types except int64 and uint64. The term built-in data type refers to data types defined by MATLAB itself as opposed to data types defined by MATLAB users. Unless otherwise specified,

7-2

Working with Data Types

the term data type in the Simulink documentation refers to built-in data types. The following table lists the built-in MATLAB data types supported by Simulink.
Name double single int8 uint8 int16 uint16 int32 uint32 Description

Double-precision floating point Single-precision floating point Signed 8-bit integer Unsigned 8-bit integer Signed 16-bit integer Unsigned 16-bit integer Signed 32-bit integer Unsigned 32-bit integer

Besides the built-in types, Simulink defines a boolean (1 or 0) type, instances of which are represented internally by uint8 values. Some Simulink blocks also support fixed-point data types. See “Simulink Blocks” in the online Simulink documentation for information on the data types supported by specific blocks for parameter and input and output values. If the documentation for a block does not specify a data type, the block inputs or outputs only data of type double.

Fixed-Point Data
Simulink allows you to create models that use fixed-point numbers to represent signals and parameter values. The use of fixed-point data in a model can significantly reduce the size and increase the speed of code generated from the model. See the documentation for the Fixed-Point Blockset for more information on creating and running fixed-point models.

7-3

7

Working with Data

Block Support for Data and Numeric Signal Types
All Simulink blocks accept signals of type double by default. Some blocks prefer boolean input and others support multiple data types on their inputs. See “Simulink Blocks” in the online Simulink documentation for information on the data types supported by specific blocks for parameter and input and output values. If the documentation for a block does not specify a data type, the block inputs or outputs only data of type double.

Specifying Block Parameter Data Types
When entering block parameters whose data type is user-specifiable, use the syntax
type(value)

to specify the parameter, where type is the name of the data type and value is the parameter value. The following examples illustrate this syntax.
single(1.0) int8(2) int32(3+2i)

Specifies a single-precision value of 1.0 Specifies an eight-bit integer of value 2 Specifies a complex value whose real and imaginary parts are 32-bit integers

You can specify any MATLAB built-in data type supported by Simulink as the data type of a parameter (see “Data Types Supported by Simulink” on page 7-2). You cannot specify fixed-point data types as parameter data types.

Creating Signals of a Specific Data Type
You can introduce a signal of a specific data type into a model in any of the following ways: • Load signal data of the desired type from the MATLAB workspace into your model via a root-level inport or a From Workspace block. • Create a Constant block in your model and set its parameter to the desired type. • Use a Data Type Conversion block to convert a signal to the desired data type.

7-4

Working with Data Types

Displaying Port Data Types
To display the data types of ports in your model, select Port Data Types from Simulink’s Format menu. Simulink does not update the port data type display when you change the data type of a diagram element. To refresh the display, type Ctrl+D.

Data Type Propagation
Whenever you start a simulation, enable display of port data types, or refresh the port data type display, Simulink performs a processing step called data type propagation. This step involves determining the types of signals whose type is not otherwise specified and checking the types of signals and input ports to ensure that they do not conflict. If type conflicts arise, Simulink displays an error dialog that specifies the signal and port whose data types conflict. Simulink also highlights the signal path that creates the type conflict.

Note You can insert typecasting (data type conversion) blocks in your model to resolve type conflicts. See “Typecasting Signals” on page 7-6 for more information.

Data Typing Rules
Observing the following rules can help you to create models that are typesafe and therefore execute without error: • Signal data types generally do not affect parameter data types, and vice versa. A significant exception to this rule is the Constant block, whose output data type is determined by the data type of its parameter. • If the output of a block is a function of an input and a parameter, and the input and parameter differ in type, Simulink converts the parameter to the input type before computing the output. See “Typecasting Parameters” on page 7-6 for more information. • In general, a block outputs the data type that appears at its inputs. Significant exceptions include Constant blocks and Data Type Conversion blocks, whose output data types are determined by block parameters.

7-5

7

Working with Data

• Virtual blocks accept signals of any type on their inputs. Examples of virtual blocks include Mux and Demux blocks and unconditionally executed subsystems. • The elements of a signal array connected to a port of a nonvirtual block must be of the same data type. • The signals connected to the input data ports of a nonvirtual block cannot differ in type. • Control ports (for example, Enable and Trigger ports) accept any data type. • Solver blocks accept only double signals. • Connecting a non-double signal to a block disables zero-crossing detection for that block.

Enabling Strict Boolean Type Checking
By default, Simulink detects but does not signal an error when it detects that double signals are connected to blocks that prefer boolean input. This ensures compatibility with models created by earlier versions of Simulink that support only double data type. You can enable strict Boolean type checking by clearing the Boolean logic signals option on the Advanced panel of the Simulation Parameters dialog box (see “The Advanced Pane” on page 10-30).

Typecasting Signals
Simulink displays an error whenever it detects that a signal is connected to a block that does not accept the signal’s data type. If you want to create such a connection, you must explicitly typecast (convert) the signal to a type that the block does accept. You can use Simulink’s Data Type Conversion block to perform such conversions.

Typecasting Parameters
In general, during simulation, Simulink silently converts parameter data types to signal data types (if they differ) when computing block outputs that are a function of an input signal and a parameter. The following exceptions occur to this rule: • If the signal data type cannot represent the parameter value, Simulink halts the simulation and signals an error. Consider, for example, the following model.

7-6

Working with Data Types

This model uses a Gain block to amplify a constant input signal. Computing the output of the Gain block requires computing the product of the input signal and the gain. Such a computation requires that the two values be of the same data type. However, in this case, the data type of the signal, uint8 (unsigned 8-bit word), differs from the data type of the gain parameter, int32 (signed 32-bit integer). Thus computing the output of the Gain block entails a type conversion. When making such conversions, Simulink always casts the parameter type to the signal type. Thus, in this case, Simulink must convert the Gain block’s gain value to the data type of the input signal. Simulink can make this conversion only if the input signal’s data type (uint8) can represent the gain. In this case, Simulink can make the conversion because the gain is 255, which is within the range of the uint8 data type (0 to 255). Thus, this model simulates without error. However, if the gain were slightly larger (for example, 256), Simulink would signal an out-of-range error if you attempted to simulate the model. • If the signal data type can represent the parameter value but only at reduced precision, Simulink optionally issues a warning message and continues the simulation (see “Configuration options” on page 10-27). Consider, for example, the following model.

In this example, the signal type accommodates only integer values, while the gain value has a fractional component. Simulating this model causes Simulink to truncate the gain to the nearest integral value (2) and issue a loss-of-precision warning. On the other hand, if the gain were 2.0, Simulink would simulate the model without complaint because in this case the conversion entails no loss of precision.

7-7

7

Working with Data

Note Conversion of an int32 parameter to a float or double can entail a loss of precision. The loss can be severe if the magnitude of the parameter value is large. If an int32 parameter conversion does entail a loss of precision, Simulink issues a warning message.

7-8

Working with Data Objects

Working with Data Objects
Simulink data objects allow you to specify information about the data used in a Simulink model (i.e., signals and parameters) and to store the information with the data itself in the model. Simulink uses properties of data objects to determine the tunability of parameters and the visibility of signals and to generate code. You can use data objects to specify information important to correct simulation of the model, such as minimum and maximum values for parameters. Further, you can store data objects with the model. Simulink thus allows you to create self-contained models.

Note Simulink stores references to data objects rather than the objects themselves in the model file. The referenced objects must exist in the model workspace before the model is loaded. You can use a model preload callback function to load the objects referenced by the model before the model itself is loaded (see “Creating Persistent Parameter and Signal Objects” on page 7-14 for more information).

Data Object Classes
A data object is an instance of another object called a data object class. A data object class defines the properties of the data objects that are its instances and methods for creating and manipulating the instances. Simulink comes with two built-in data classes, Simulink.Parameter and Simulink.Signal, that define parameter and signal data objects, respectively.

Data Object Properties
A property of a data object specifies an attribute of the data item that the object describes, such as the value or storage type of the data item. Every property has a name and a value. The value can be an array or a structure, depending on the property.

Data Object Packages
Simulink organizes classes into groups of classes called packages. Simulink comes with a single package named Simulink. The Simulink classes, Simulink.Parameter and Simulink.Signal, belong to the Simulink package.

7-9

7

Working with Data

You can create additional packages and define classes that belong to those classes.

Qualified Names
When referring to a class on the MATLAB command line or in an M-file program, you must specify both the name of the class and the name of the class’s package, using the following dot notation:
PackageName.ClassName

The PackageName.ClassName notation is called the qualified name of the class. For example, the qualified name of the Simulink parameter class is Simulink.Parameter. Two packages can have identically named but distinct classes. For example, packages A and B can both have a class named C. You can refer to these classes unambiguously on the MATLAB command line or in an M-file program, using the qualified class name for each. Packages enable you to avoid naming conflicts when creating classes. For example, you can create your own Parameter and Signal classes without fear of conflicting with the similarly named Simulink classes.

Note Class and package names are case sensitive. You cannot, for example, use A.B and a.b interchangeably to refer to the same class.

Creating Data Objects
You can use either the Simulink Data Explorer or MATLAB commands to create Simulink data objects. See “The Simulink Data Explorer” on page 7-27 for information on using the Data Explorer to create data objects. Use the following syntax to create a data object at the MATLAB command line or in a program:
h = package.class(arg1, arg2, ...argn);

where h is a MATLAB variable, package is the name of the package to which the class belongs, class is the name of the class, and arg1, arg2, ... argn, are optional arguments passed to the object constructor. (Constructors for the

7-10

Working with Data Objects

Simulink.Parameter and Simulink.Signal classes do not take arguments.) For example, to create an instance of the Simulink.Parameter class, enter hGain = Simulink.Parameter;

at the MATLAB command line. This command creates an instance of Simulink.Parameter and stores its handle in hGain.

Accessing Data Object Properties
You can use either the Simulink Data Explorer (see “The Simulink Data Explorer” on page 7-27) or MATLAB commands to get and set a data object’s properties. See “The Simulink Data Explorer” on page 7-27 for information on how to use the Data Explorer to display and set object properties. To access a data object’s properties at the MATLAB command line or in an M-file program, use the following notation:
hObject.property

where hObject is the handle to the object and property is the name of the property. For example, the following code
hGain = Simulink.Parameter; hGain.Value = 5;

creates a Simulink block parameter object and sets the value of its Value property to 5. You can use dot notation recursively to access the fields of structure properties. For example, gain.RTWInfo.StorageClass returns the StorageClass property of the gain parameter.

Invoking Data Object Methods
Use the syntax
hObject.method

or
method(hObject)

to invoke a data object method, where hObject is the object’s handle. Simulink defines the following methods for data objects.

7-11

7

Working with Data

• get Returns the properties of the object as a MATLAB structure • copy Creates a copy of the object and returns a handle to the copy.

Saving and Loading Data Objects
You can use the MATLAB save command to save data objects in a MAT-file and the MATLAB load command to restore them to the MATLAB workspace in the same or a later session. Definitions of the classes of saved objects must exist on the MATLAB path for them to be restored. If the class of a saved object acquires new properties after the object is saved, Simulink adds the new properties to the restored version of the object. If the class loses properties after the object is saved, Simulink restores only the properties that remain.

Using Data Objects in Simulink Models
You can use data objects in Simulink models as parameters and signals. Using data objects as parameters and signals allows you to specify simulation and code generation options on an object-by-object basis.

Using Data Objects as Parameters
You can use an instance of Simulink.Parameter class or a descendant class as a block parameter. To use a parameter object as a block parameter:
1 Create the parameter object at the MATLAB command line or in the

Simulink Data Explorer.
2 Set the value of the object’s Value property to the value you want to specify

for the block parameter.
3 Set the parameter object’s storage class and type properties to select

tunability (see “The Simulink Data Explorer” on page 7-27) and/or code generation options (see the Real-Time Workshop documentation for more information).
4 Specify the parameter object as the block parameter in the block’s

parameter dialog box or in a set_param command.

7-12

Working with Data Objects

See “Creating Persistent Parameter and Signal Objects” on page 7-14 for information on how to create parameter objects that persist across a session.

Using Parameter Objects to Specify Parameter Tunability
If you want the parameter to be tunable even when the Inline parameters simulation option is set (see “Model parameter configuration” on page 10-30), set the parameter object’s RTWInfo.StorageClass property to any value but 'Auto' (the default).
gain.RTWInfo.StorageClass = 'SimulinkGlobal';

If you set the RTWInfo.StorageClass property to any value other than Auto, you should not include the parameter in the model’s tunable parameters table (see “Model Parameter Configuration Dialog Box” on page 10-34).

Note Simulink halts the simulation and displays an error message if it detects a conflict between the properties of a parameter as specified by a parameter object and the properties of the parameter as specified in the Model Parameter Configuration dialog box.

Using Data Objects as Signals
You can use an instance of Simulink.Signal class or a descendent class to specify signal properties. To use a data object as a signal object to specify signal properties,
1 Create the signal data object in the model workspace. 2 Set the storage class and type properties of the signal object to specify the

visibility of the signal (see “Using Signal Objects to Specify Test Points” on page 7-14) and code generation options (see the Real-Time Workshop documentation for information on using signal properties to specify code generation options).
3 Change the label of any signal that you want to have the same properties as

the signal data object to have the same name as the signal. See “Creating Persistent Parameter and Signal Objects” on page 7-14 for information on creating signal objects that persist across Simulink sessions.

7-13

7

Working with Data

Using Signal Objects to Specify Test Points
If you want a signal to be a test point (i.e., always available for display on a floating scope during simulation), set the RTWInfo.StorageClass property of the corresponding signal object to any value but auto.

Note Simulink halts the simulation and displays an error message if it detects a conflict between the properties of a signal as specified by a signal object and the properties of the parameter as specified in the Signal Properties dialog box (see “Signal Properties Dialog Box” on page 6-11).

Creating Persistent Parameter and Signal Objects
To create parameter and signal objects that persist across Simulink sessions, first write a script that creates the objects or create the objects with the Simulink Data Explorer (see “The Simulink Data Explorer” on page 7-27) or at the command line and save them in a MAT-file (see “Saving and Loading Data Objects” on page 7-12). Then use either the script or a load command as the PreLoadFcn callback routine for the model that uses the objects. For example, suppose you save the data objects in a file named data_objects.mat and the model to which they apply is open and active. Then, entering the following command
set_param(gcs, 'PreLoadFcn', 'load data_objects');

at the MATLAB command line sets load data_objects as the model’s preload function. This in turn causes the data objects to be loaded into the model workspace whenever you open the model.

Creating Data Object Classes
The Simulink Data Class Designer allows you to define your own data object classes. To define a class with the Data Class Designer, you enter the package, name, parent class, properties, and other characteristics of the class in a dialog box. The Data Class Designer then generates P-code that defines the class. You can also use the Data Class Designer to change the definitions of classes that it created, for example, to add or remove properties.

7-14

Working with Data Objects

Note You can use the Data Class Designer to create custom storage classes. See the RTW documentation for information on custom storage classes.

7-15

7

Working with Data

Creating a Data Object Class
To create a class with the Data Class Designer:
1 Select Data class designer from the Simulink Tools menu.

The Data Class Designer’s dialog box appears.

7-16

Working with Data Objects

2 Select the name of the package in which you want to create the class from

the Package name list. Do not create a class in any of Simulink’s built-in packages, i.e., packages in matlabroot/toolbox/simulink. See “Creating a Class Package” on page 7-25 for information on creating your own class packages.
3 Click the New button on the Classes pane of the Data Class Designer

dialog box.
4 Enter the name of the new class in the Class name field on the Classes

pane. Note The name of the new class must be unique in the package to which the new class belongs. Class names are case sensitive. For example, Simulink considers Signal and signal to be names of different classes.

5 Press Enter or click the OK button on the Classes pane to create the

specified class in memory.
6 Select a parent class for the new class (see “Specifying a Parent for a Class”

on page 7-19).
7 Define the properties of the new class (see “Defining Class Properties” on

page 7-20).
8 If necessary, create initialization code for the new class (see “Creating

Initialization Code” on page 7-24).

7-17

7

Working with Data

9 Click Confirm changes.

Simulink displays the Confirm changes pane.

1 Click Write all or select the package containing the new class definition and 0

click Write selected to save the new class definition. You can also use the Classes pane to perform the following operations.
Copy a class. To copy a class, select the class in the Classes pane and click

Copy. Simulink creates a copy of the class under a slightly different name. Edit the name, if desired, click Confirm changes, and click Write all or, after selecting the appropriate package, Write selected to save the new class.
Rename a class. To rename a class, select the class in the Classes pane and click

Rename. The Class name field becomes editable. Edit the field to reflect the new name. Save the package containing the renamed class, using the Confirm changes pane.
Remove a class from a package. To remove a class definition from the currently selected package, select the class in the Classes pane and click Remove.

7-18

Working with Data Objects

Simulink removes the class from the in-memory definition of the class. Save the package that formerly contained the class.

Specifying a Parent for a Class
To specify a parent for a class:
1 Select the name of the class from the Class name field on the Classes pane. 2 Select the package name of the parent class from the lefthand Derived from

list box.

3 Select the parent class from the righthand Derived from list.

7-19

7

Working with Data

Simulink displays properties of the selected class derived from the parent class in the Properties of this class field.

Simulink grays the inherited properties to indicate that they cannot be redefined by the child class.
4 Save the package containing the class.

Defining Class Properties
To add a property to a class,
1 Select the name of the class from the Class name field on the Classes pane. 2 Select the New button next to the Properties of this class field on the

Classes pane.

Simulink creates a property with a default name and value and displays the property in the Properties of this class field.

7-20

Working with Data Objects

3 Enter a name for the new property in the Property Name column.

Note The property name must be unique to the class. Unlike class names, property names are not case sensitive. For example, Simulink treats Value and value as referring to the same property.

4 Select the data type of the property from the Property Type list.

The list includes built-in property types and any enumerated property types that you have defined (see “Defining Enumerated Property Types” on page 7-22).
5 If you want the property to have a default value, enter the default value in

the Factory Value column. The default value is the value the property has when an instance of the associated class is created. The initialization code for the class can override this value (see “Creating Initialization Code” on page 7-24 for more information). The following rules apply to entering factory values for properties: - Do not use quotation marks when entering the value of a string property. Simulink treats the value that you enter as a literal string. - The value of a MATLAB array property can be any expression that evaluates to an array, cell array, structure, or object. Enter the expression exactly as you would enter the value on the command line, for example, [0 1; 1 0]. Simulink evaluates the expression that you enter to check its validity. Simulink displays a warning message if evaluating the expression results in an error. Regardless of whether an evaluation error occurs, Simulink stores the expression as the factory value of the property. This is because an expression that is invalid at define time might be valid at run-time. - You can enter any expression that evaluates to a numeric value as the value of a double or int32 property. Simulink evaluates the expression and stores the result as the property’s factory value.
6 Save the package containing the class with new or changed properties.

7-21

7

Working with Data

Defining Enumerated Property Types
An enumerated property type is a property type whose value must be one of a specified set of values, for example, red, blue, or green. An enumerated property type is valid only in the package that defines it. To create an enumerated property type:
1 Select the Enumerated Property Types pane of the Data Class Designer.

2 Click the New button next to the Property type name field.

Simulink creates an enumerated type with a default name.

3 Change the default name in the Property type name field to the desired

name for the property. The currently selected package defines an enumerated property type and the type can be referenced only in the package that defines it. However, the name of the enumerated property type must be globally unique. There cannot be any other built-in or user-defined enumerated property with the same name. If you enter the name of an existing built-in or user-defined

7-22

Working with Data Objects

enumerated property for the new property, Simulink displays an error message.
4 Click the OK button.

Simulink creates the new property in memory and enables the Enumerated strings field on the Enumerated Property Types pane.
5 Enter the permissible values for the new property type Enumerated strings

field, one per line. For example, the following Enumerated strings field shows the permissible values for an enumerated property type named Color.

6 Click Apply to save the changes in memory. 7 Click Confirm changes. Then click Write all to save this change.

You can also use the Enumerated Property Type pane to copy, rename, and remove enumerated property types. • Click the Copy button to copy the currently selected property type. Simulink creates a new property that has a new name, but has the same value set as the original property. • Click the Rename button to rename the currently selected property type. The Property name field becomes editable. Edit the field to reflect the new name. • Click the Remove button to remove the currently selected property.

7-23

7

Working with Data

Don’t forget to save the package containing the modified enumerated property type.

Creating Initialization Code
You can specify code to be executed when Simulink creates an instance of a data object class. To specify initialization code for a class, select the class from the Class name field of the Data Class Designer and enter the initialization code in the Class initialization field. The Data Class Designer inserts the code that you enter in the Class initialization field in the class instantiation function of the corresponding class. Simulink invokes this function when it creates an instance of this class. The class instantiation function has the form
function h = ClassName(varargin)

where h is the handle to the object that is created and varargin is a cell array that contains the function's input arguments. By entering the appropriate code in the Data Class Designer, you can cause the instantiation function to perform such initialization operations as • Error checking • Loading information from data files • Override factory values • Initialize properties to user-specified values For example, suppose you want to let a user initialize the ParamName property of instances of a class named MyPackage.Parameter. The user does this by passing the initial value of the ParamName property to the class constructor.
Kp = MyPackage.Parameter('Kp');

The following code in the instantiation function would perform the required initialization.
switch nargin case 0 % No input arguments - no action case 1 % One input argument h.ParamName = varargin{1};

7-24

Working with Data Objects

otherwise warning('Invalid number of input arguments'); end

Creating a Class Package
To create a new package to contain your classes:
1 Click the New button next to the Package name field of the Data Class

Designer.

Simulink displays a default package name in the Package name field.

2 Edit the Package name field to contain the package name that you want.

3 Click OK to create the new package in memory. 4 In the package Parent directory field, enter the path of the directory where

you want Simulink to create the new package.

Simulink creates the specified directory, if it does not already exist, when you save the package to your file system in the succeeding steps.

7-25

7

Working with Data

5 Click the Confirm changes button on the Data Class Designer.

Simulink displays the Packages to write panel.

6 To enable use of this package in the current and future sessions, ensure that

the Add parent directory to MATLAB path box is selected (the default). This adds the path of the new package’s parent directory to the MATLAB path.
7 Click Write all or select the new package and click Write selected to save

the new package. You can also use the Data Class Designer to copy, rename, and remove packages.
Copying a package. To copy a package, select the package and click the Copy button next to the Package name field. Simulink creates a copy of the package under a slightly different name. Edit the new name, if desired, and click OK to create the package in memory. Then save the package to make it permanent. Renaming a package. To rename a package, select the package and click the

Rename button next to the Package name field. The field becomes editable.

Edit the field to reflect the new name. Save the renamed package.
Removing a package. To remove a package, select the package and click the

Remove button next to the Package name field to remove the package from memory. Click the Confirm changes button to display the Packages to remove panel. Select the package and click Remove selected to remove the package from your file system or click Remove all to remove all packages that

you have removed from memory from your file system as well.

7-26

The Simulink Data Explorer

The Simulink Data Explorer
The Simulink Data Explorer allows you to display and set the values of variables and data objects in the MATLAB workspace. To open the Data Explorer, choose Data explorer from the Simulink Tools menu or enter slexplr at the MATLAB prompt. The Data Explorer dialog box appears.

The Data Explorer contains two panes. The left pane lists variables defined in the MATLAB workspace. Use the Filter option control to specify the types of variables to be displayed (for example, all variables or Simulink data objects only). The right pane displays the value of the variable selected in the left pane. To create, rename, or delete an object, click the right mouse button in the left pane. To display the fields of a property structure, click the + button next to the property’s name. To change a value, click the value. If the value is a string, edit the string. If the property must be set to one of a predefined set of values, the Data Explorer displays a drop-down list displaying valid values. Select the value you want. If

7-27

7

Working with Data

the value is an array, the Data Explorer displays an array editor that allows you to set the dimensions of the array and the values of each element.

7-28

Associating User Data with Blocks

Associating User Data with Blocks
You can use Simulink’s set_param command to associate your own data with a block. For example, the following command associates the value of the variable mydata with the currently selected block.
set_param(gcb, 'UserData', mydata)

The value of mydata can be any MATLAB data type, including arrays, structures, objects, and Simulink data objects. Use get_param to retrieve the user data associated with a block.
get_param(gcb, 'UserData')

The following command causes Simulink to save the user data associated with a block in the model file of the model containing the block.
set_param(gcb, 'UserDataPersistent', 'on');

7-29

7

Working with Data

7-30

8
Modeling with Simulink
The following sections provides tips and guidelines for creating Simulink models. Modeling Equations (p. 8-2) Avoiding Invalid Loops (p. 8-6) Tips for Building Models (p. 8-8) How to use Simulink blocks to model mathematical equations. How to avoid creating invalid loops in your model. Tips on creating efficient, accurate models of a dynamic system.

8

Modeling with Simulink

Modeling Equations
One of the most confusing issues for new Simulink users is how to model equations. Here are some examples that might improve your understanding of how to model equations.

Converting Celsius to Fahrenheit
To model the equation that converts Celsius temperature to Fahrenheit
TF = 9/5(TC) + 32

First, consider the blocks needed to build the model: • A Ramp block to input the temperature signal, from the Sources library • A Constant block to define a constant of 32, also from the Sources library • A Gain block to multiply the input signal by 9/5, from the Math library • A Sum block to add the two quantities, also from the Math library • A Scope block to display the output, from the Sinks library Next, gather the blocks into your model window.

Assign parameter values to the Gain and Constant blocks by opening (double-clicking) each block and entering the appropriate value. Then, click the Close button to apply the value and close the dialog box. Now, connect the blocks.

8-2

Modeling Equations

The Ramp block inputs Celsius temperature. Open that block and change the Initial output parameter to 0. The Gain block multiplies that temperature by the constant 9/5. The Sum block adds the value 32 to the result and outputs the Fahrenheit temperature. Open the Scope block to view the output. Now, choose Start from the Simulation menu to run the simulation. The simulation runs for 10 seconds.

Modeling a Simple Continuous System
To model the differential equation x′ (t) = – 2x (t) + u (t) where u(t) is a square wave with an amplitude of 1 and a frequency of 1 rad/sec. The Integrator block integrates its input x′ to produce x. Other blocks needed in this model include a Gain block and a Sum block. To generate a square wave, use a Signal Generator block and select the Square Wave form but change the default units to radians/sec. Again, view the output using a Scope block. Gather the blocks and define the gain. In this model, to reverse the direction of the Gain block, select the block, then use the Flip Block command from the Format menu. To create the branch line from the output of the Integrator block to the Gain block, hold down the Ctrl key while drawing the line. For more information, see “Drawing a Branch Line” on page 4-12. Now you can connect all the blocks.

An important concept in this model is the loop that includes the Sum block, the Integrator block, and the Gain block. In this equation, x is the output of the Integrator block. It is also the input to the blocks that compute x′, on which it is based. This relationship is implemented using a loop.

8-3

8

Modeling with Simulink

The Scope displays x at each time step. For a simulation lasting 10 seconds, the output looks like this:

The equation you modeled in this example can also be expressed as a transfer function. The model uses the Transfer Fcn block, which accepts u as input and outputs x. So, the block implements x/u. If you substitute sx for x′ in the above equation, you get sx = – 2x + u Solving for x gives x = u ⁄ (s + 2) or, x ⁄ u = 1 ⁄ (s + 2) The Transfer Fcn block uses parameters to specify the numerator and denominator coefficients. In this case, the numerator is 1 and the denominator is s+2. Specify both terms as vectors of coefficients of successively decreasing powers of s. In this case the numerator is [1] (or just 1) and the denominator is [1 2]. The model now becomes quite simple.

8-4

Modeling Equations

The results of this simulation are identical to those of the previous model.

8-5

8

Modeling with Simulink

Avoiding Invalid Loops
Simulink allows you to connect the output of a block directly or indirectly (i.e., via other blocks) to its input, thereby, creating a loop. Loops can be very useful. For example, you can use loops to solve differential equations diagramatically (see “Modeling a Simple Continuous System” on page 8-3) or model feedback control systems. However, it is also possible to create loops that cannot be simulated. Common types of invalid loops include: • Loops that create invalid function-call connections or an attempt to modify the input/output arguments of a function call • Self-triggering subsystems and loops containing non-latched triggered subsystems • Loops containing action subsystems The Subsystem Examples block library in the Ports & Subsystems library contains models that illustrates examples of valid and invalid loops involving triggered and function-call subsystems. Examples of invalid loops include the following models: • simulink/Ports&Subsystems/sl_subsys_semantics/Triggered
subsystem/sl_subsys_trigerr1

• simulink/Ports&Subsystems/sl_subsys_semantics/Triggered
subsystem/sl_subsys_trigerr2

• simulink/Ports&Subsystems/sl_subsys_semantics/Function-call
systems/sl_subsys_fcncallerr3

You might find it useful to study these examples to avoid creating invalid loops in your own models.

8-6

Avoiding Invalid Loops

Detecting Invalid Loops
To detect whether your model contains invalid loops, select Update diagram from the model’s Edit menu. If the model contains invalid loops, Simulink highlights the loops

and displays an error message in the Simulink Diagnostic Viewer.

8-7

8

Modeling with Simulink

Tips for Building Models
Here are some model-building hints you might find useful: • Memory issues In general, the more memory, the better Simulink performs. • Using hierarchy More complex models often benefit from adding the hierarchy of subsystems to the model. Grouping blocks simplifies the top level of the model and can make it easier to read and understand the model. For more information, see “Creating Subsystems” on page 4-20. The Model Browser provides useful information about complex models (see “The Model Browser” on page 9-8). • Cleaning up models Well organized and documented models are easier to read and understand. Signal labels and model annotations can help describe what is happening in a model. For more information, see “Signal Names” on page 6-17 and “Annotating Diagrams” on page 4-16. • Modeling strategies If several of your models tend to use the same blocks, you might find it easier to save these blocks in a model. Then, when you build new models, just open this model and copy the commonly used blocks from it. You can create a block library by placing a collection of blocks into a system and saving the system. You can then access the system by typing its name in the MATLAB command window. Generally, when building a model, design it first on paper, then build it using the computer. Then, when you start putting the blocks together into a model, add the blocks to the model window before adding the lines that connect them. This way, you can reduce how often you need to open block libraries.

8-8

9
Browsing and Searching Models
The following sections describe tools that enable you to quickly navigate to any point in a model and find objects in a model. Finding Objects (p. 9-2) The Model Browser (p. 9-8) How to locate blocks, states, and other objects in a model, using search criteria that you specify. How to navigate quickly to any point in a model’s block hierarchy.

9

Browsing and Searching Models

Finding Objects
To locate blocks, signals, states, or other objects in a model, select Find from the Edit menu. The Find dialog box appears.

Use the Filter options (see “Filter Options” on page 9-3) and Search criteria (see “Search Criteria” on page 9-4) panels to specify the characteristics of the object you want to find. Next, if you have more than one system or subsystem open, select the system or subsystem where you want the search to begin from the Start in system list. Finally, select the Find button. Simulink searches the selected system for objects that meet the criteria you have specified.

9-2

Finding Objects

Any objects that satisfy the criteria appear in the results panel at the bottom of the dialog box.

You can display an object by double-clicking its entry in the search results list. Simulink opens the system or subsystem that contains the object (if necessary) and highlights and selects the object. To sort the results list, click any of the buttons at the top of each column. For example, to sort the results by object type, click the Type button. Clicking a button once sorts the list in ascending order, clicking it twice sorts it in descending order. To display an object’s parameters or properties, select the object in the list. Then press the right mouse button and select Parameter or Properties from the resulting context menu.

Filter Options
The Filter options panel allows you to specify the kinds of objects to look for and where to search for them.

9-3

9

Browsing and Searching Models

Object type list

Object type list
The object type list lists the types of objects that Simulink can find. By clearing a type, you can exclude it from the Finder’s search.

Look inside masked subsystem
Selecting this option causes Simulink to look for objects inside masked subsystems.

Look inside linked systems
Selecting this option causes Simulink to look for objects inside subsystems linked to libraries.

Search Criteria
The Search criteria panel allows you to specify the criteria that objects must meet to satisfy your search request.

Basic
The Basic panel allows you to search for an object whose name and, optionally, dialog parameters match a specified text string. Enter the search text in the panel’s Find what field. To display previous search text, select the drop-down list button next to the Find what field. To reenter text, click it in the drop-down

9-4

Finding Objects

list. Select Search block dialog parameters if you want dialog parameters to be included in the search.

Advanced
The Advanced panel allows you to specify a set of as many as seven properties that an object must have to satisfy your search request.

To specify a property, enter its name in one of the cells in the Property column of the Advanced pane or select the property from the cell’s property list. To display the list, select the down arrow button next to the cell. Next enter the value of the property in the Value column next to the property name. When you enter a property name, the Finder checks the check box next to the property name in the Select column. This indicates that the property is to be included in the search. If you want to exclude the property, clear the check box.

Match case
Select this option if you want Simulink to consider case when matching search text against the value of an object property.

Other match options
Next to the Match case option is a list that specifies other match options that you can select: • Match whole word Specifies a match if the property value and the search text are identical except possibly for case.

9-5

9

Browsing and Searching Models

• Contains word Specifies a match if a property value includes the search text. • Regular expression Specifies that the search text should be treated as a regular expression when matched against property values. The following characters have special meanings when they appear in a regular expression.
Character ^ $. \ Meaning

Matches start of string. Matches end of string. Matches any character. Escape character. Causes the next character to have its ordinary meaning. For example, the regular expression \.. matches .a and .2 and any other two-character string that begins with a period. Matches zero or more instances of the preceding character. For example, ba* matches b, ba, baa, etc. Matches one or more instances of the preceding character. For example, ba+ matches ba, baa, etc. Indicates a set of characters that can match the current character. A hyphen can be used to indicate a range of characters. For example, [a-zA-Z0-9_]+ matches foo_bar1 but not foo$bar. A ^ indicates a match when the current character is not one of the following characters. For example, [^0-9] matches any character that is not a digit. Matches a word character (same as [a-z_A-Z0-9]). Matches a nonword character (same as [^a-z_A-Z0-9]). Matches a digit (same as [0-9]). Matches a nondigit (same as [^0-9]). Matches white space (same as [\t\r\n\f]).

*

+

[]

\w \W \d \D \s

9-6

Finding Objects

Character \S \<WORD\>

Meaning

Matches nonwhite space (same as [^ \t\r\n\f]). Matches WORD where WORD is any string of word characters surrounded by white space.

9-7

9

Browsing and Searching Models

The Model Browser
The Model Browser enables you to • Navigate a model hierarchically • Open systems in a model • Determine the blocks contained in a model The browser operates differently on Microsoft Windows and UNIX platforms.

Using the Model Browser on Windows
To display the Model Browser, select Model Browser from the Simulink View menu.

The model window splits into two panes. The left pane displays the browser, a tree-structured view of the block diagram displayed in the right pane.

9-8

The Model Browser

Note The Browser initially visible preference causes Simulink to open models by default in the Model Browser. To set this preference, select Preferences from the Simulink File menu.

The top entry in the tree view corresponds to your model. A button next to the model name allows you to expand or contract the tree view. The expanded view shows the model’s subsystems. A button next to a subsystem indicates that the subsystem itself contains subsystems. You can use the button to list the subsystem’s children. To view the block diagram of the model or any subsystem displayed in the tree view, select the subsystem. You can use either the mouse or the keyboard to navigate quickly to any subsystem in the tree view.

Navigating with the Mouse
Click any subsystem visible in the tree view to select it. Click the + button next to any subsystem to list the subsystems that it contains. Click the button again to contract the entry.

Navigating with the Keyboard
Use the up/down arrows to move the current selection up or down the tree view. Use the left/right arrow or +/- keys on your numeric keypad to expand an entry that contains subsystems.

Showing Library Links
The Model Browser can include or omit library links from the tree view of a model. Use the Simulink Preferences dialog box to specify whether to display library links by default. To toggle display of library links, select Show library links from the Model browser options submenu of the Simulink View menu.

Showing Masked Subsystems
The Model Browser can include or omit masked subsystems from the tree view. If the tree view includes masked subsystems, selecting a masked subsystem in the tree view displays its block diagram in the diagram view. Use the Simulink Preferences dialog box to specify whether to display masked subsystems by default. To toggle display of masked subsystems, select Look under masks from the Model browser options submenu of the Simulink View menu.

9-9

9

Browsing and Searching Models

Using the Model Browser on UNIX
To open the Model Browser, select Show Browser from the File menu. The Model Browser window appears, displaying information about the current model. This figure shows the Model Browser window displaying the contents of the clutch system.

Current system and subsystems it contains

Blocks in the selected system

Contents of the Browser Window
The Model Browser window consists of • The systems list. The list on the left contains the current system and the subsystems it contains, with the current system selected. • The blocks list. The list on the right contains the names of blocks in the selected system. Initially, this window displays blocks in the top-level system. • The File menu, which contains the Print, Close Model, and Close Browser menu items. • The Options menu, which contains the menu items Open System, Look Into System, Display Alphabetical/Hierarchical List, Expand All, Look Under Mask Dialog, and Expand Library Links. • The Options check boxes and buttons Look Under [M]ask Dialog and Expand [L]ibrary Links check boxes, and Open System and Look Into System buttons. By default, Simulink does not display the contents of

9-10

The Model Browser

masked blocks and blocks that are library links. These check boxes enable you to override the default. • The block type of the selected block. • Dialog box buttons Help, Print, and Close.

Interpreting List Contents
Simulink identifies masked blocks, reference blocks, blocks with defined OpenFcn parameters, and systems that contain subsystems using these symbols before a block or system name: • A plus sign (+) before a system name in the systems list indicates that the system is expandable, which means that it has systems beneath it. Double-click the system name to expand the list and display its contents in the blocks list. When a system is expanded, a minus sign (-) appears before its name. • [M] indicates that the block is masked, having either a mask dialog box or a mask workspace. For more information about masking, see Chapter 12, “Creating Masked Subsystems.” • [L] indicates that the block is a reference block. For more information, see “Connecting Blocks” on page 4-9. • [O] indicates that an open function (OpenFcn) callback is defined for the block. For more information about block callbacks, see “Using Callback Routines” on page 4-71. • [S] indicates that the system is a Stateflow block.

Opening a System
You can open any block or system whose name appears in the blocks list. To open a system:
1 In the systems list, select by single-clicking the name of the parent system

that contains the system you want to open. The parent system’s contents appear in the blocks list.
2 Depending on whether the system is masked, linked to a library block, or

has an open function callback, you open it as follows: - If the system has no symbol to its left, double-click its name or select its name and click the Open System button.

9-11

9

Browsing and Searching Models

- If the system has an [M] or [O] before its name, select the system name and click the Look Into System button.

Looking into a Masked System or a Linked Block
By default, the Model Browser considers masked systems (identified by [M]) and linked blocks (identified by [L]) as blocks and not subsystems. If you click Open System while a masked system or linked block is selected, the Model Browser displays the system or block’s dialog box (Open System works the same way as double-clicking the block in a block diagram). Similarly, if the block’s OpenFcn callback parameter is defined, clicking Open System while that block is selected executes the callback function. You can direct the Model Browser to look beyond the dialog box or callback function by selecting the block in the blocks list, then clicking Look Into System. The Model Browser displays the underlying system or block.

Displaying List Contents Alphabetically
By default, the systems list indicates the hierarchy of the model. Systems that contain systems are preceded with a plus sign (+). When those systems are expanded, the Model Browser displays a minus sign (-) before their names. To display systems alphabetically, select the Display Alphabetical List menu item on the Options menu.

9-12

10
Running a Simulation
The following sections explain how to run a Simulink simulation. Simulation Basics (p. 10-2) How to start, suspend, stop, interact with, and diagnose errors in a simulation.

The Simulation Parameters Dialog Box How to use this dialog box to specify the start and stop (p. 10-8) time, solver, and other simulation options. Diagnosing Simulation Errors (p. 10-37) Improving Simulation Performance and Accuracy (p. 10-41) Running a Simulation Programmatically (p. 10-43) How to use the Simulation Diagnostic Viewer to diagnose simulation errors. Tips on improving simulation performance and accuracy. How to run a simulation from a program or the MATLAB command line.

10

Running a Simulation

Simulation Basics
Running a Simulink model is generally a two-step process. First, you specify various simulation parameters, such as the solver used to solve the model, the start and stop time for the simulation, the maximum step size, and so on (see “Specifying Simulation Parameters” on page 10-3). You then start the simulation. Simulink runs the simulation from the specified start time to the specified stop time (see “Starting a Simulation” on page 10-4). While the simulation is running, you can interact with the simulation in various ways, stop or pause the simulation (see “Pausing or Stopping a Simulation” on page 10-6), and launch simulations of other models. If an error occurs during a simulation, Simulink halts the simulation and pops up a diagnostic viewer that helps you to determine the cause of the error.

Note The following sections explain how to run a simulation interactively. See “Running a Simulation Programmatically” on page 10-43 for information on running a simulation from a program or the MATLAB command line.

10-2

Simulation Basics

Specifying Simulation Parameters
To use the Simulation Parameters dialog box:
1 Open or select the model whose simulation parameters you want to set. 2 Select Simulation parameters from the model window’s Simulation menu.

The Simulation Parameters dialog box appears.

The dialog box displays the current simulation settings for the model (see “The Simulation Parameters Dialog Box” on page 10-8 for a detailed description of the settings).
3 Change the settings as necessary to suit your needs.

You can specify parameters as valid MATLAB expressions, consisting of constants, workspace variable names, MATLAB functions, and mathematical operators.
4 Click Apply to confirm the changes or OK to confirm the changes and

dismiss the dialog box.
5 If desired, save the model to save the changes to the model’s simulation

parameters.

10-3

10

Running a Simulation

Controlling Execution of a Simulation
The Simulink graphical interface includes menu commands and toolbar buttons that enable you to start, stop, and pause a simulation.

Starting a Simulation
To start execution of a model, select Start from the model editor’s Simulation menu or click the Start button on the model’s toolbar.

Start button

You can also use the keyboard shortcut, Ctrl+T, to start the simulation.

Note A common mistake that new Simulink users make is to start a simulation while the Simulink block library is the active window. Make sure your model window is the active window before starting a simulation.

Simulink starts executing the model at the start time specified on the Simulation Parameters dialog box. Execution continues until the simulation reaches the final time step specified on the Simulation Parameters dialog box, an error occurs, or you pause or terminate the simulation (see “The Simulation Parameters Dialog Box” on page 10-8).

10-4

Simulation Basics

While the simulation is running, a progress bar at the bottom of the model window shows how far the simulation has progressed. A Stop command replaces the Start command on the Simulation menu. A Pause command appears on the menu and replaces the Start button on the model toolbar.

10-5

10

Running a Simulation

Stop button Pause button

Progress bar

Your computer beeps to signal the completion of the simulation.

Pausing or Stopping a Simulation
Select the Pause command or button to pause the simulation. Simulink completes execution of the current time step and suspends execution of the simulation. When you select Pause, the menu item and button change to Continue. (The button has the same appearance as the Start button). You can resume a suspended simulation at the next time step by choosing Continue. To terminate execution of the model, select the Stop command or button. The keyboard shortcut for stopping a simulation is Ctrl+T, the same as for starting a simulation. Simulink completes execution of the current time step before terminating the model. Subsequently selecting the Start command or button restarts the simulation at the first time step specified on the Simulation Parameters dialog box. If the model includes any blocks that write output to a file or to the workspace, or if you select output options on the Simulation Parameters dialog box, Simulink writes the data when the simulation is terminated or suspended.

10-6

Simulation Basics

Interacting with a Running Simulation
You can perform certain operations interactively while a simulation is running. You can • Modify some simulation parameters, including the stop time and the maximum step size • Click a line to see the signal carried on that line on a floating (unconnected) Scope or Display block • Modify the parameters of a block, as long as you do not cause a change in - Number of states, inputs, or outputs - Sample time - Number of zero crossings - Vector length of any block parameters - Length of the internal block work vectors You cannot make changes to the structure of the model, such as adding or deleting lines or blocks, during a simulation. If you need to make these kinds of changes, you need to stop the simulation, make the change, then start the simulation again to see the results of the change.

10-7

10

Running a Simulation

The Simulation Parameters Dialog Box
This section discusses the simulation parameters, which you specify either on the Simulation Parameters dialog box or using sim and simset commands. Parameters are described as they appear on the dialog box panes.

The Solver Pane
The Solver pane appears when you first choose Parameters from the Simulation menu or when you select the Solver tab. The Solver pane allows you to • Set the simulation start and stop times • Choose the solver and specify its parameters • Select output options

Simulation Time
You can change the start time and stop time for the simulation by entering new values in the Start time and Stop time fields. The default start time is 0.0 seconds and the default stop time is 10.0 seconds. Simulation time and actual clock time are not the same. For example, running a simulation for 10 seconds usually does not take 10 seconds. The amount of

10-8

The Simulation Parameters Dialog Box

time it takes to run a simulation depends on many factors, including the model’s complexity, the solver’s step sizes, and the computer’s speed.

Solvers
Simulation of a Simulink model entails computing its inputs, outputs, and states at intervals from the simulation start time to the simulation end time. Simulink uses a solver to perform this task. No one method for solving a model is suitable for all models. Simulink therefore provides an assortment of solvers, each geared to solving a specific type of model. The Solver pane allows you to select the solver most suitable for your model (see “Improving Simulation Performance and Accuracy” on page 10-41 for information on choosing a solver). Your choices include • Fixed-step continuous solvers • Variable-step continuous solvers • Fixed-step discrete solver • Variable-step discrete solver
Fixed-step continuous solvers. These solvers compute a model’s continuous states at equally spaced time steps from the simulation start time to the simulation stop time. The solvers use numerical integration to compute the continuous states of a system from the state derivatives specified by the model. Each solver uses a different integration method, allowing you to choose the method most suitable for your model. To specify a fixed-step continuous solver for your model, select fixed-step from the solver type list on the Solver pane. Then choose one of the following options from the adjacent integration method list.

• ode5, the Dormand-Prince formula • ode4, RK4, the fourth-order Runge-Kutta formula • ode3, the Bogacki-Shampine formula • ode2, Heun’s method, also known as the improved Euler formula • ode1, Euler’s method
Fixed-step discrete solver. Simulink provides a fixed-step solver that performs no

integration. It is suitable for use in solving models that have no continuous states, including stateless models or models having only discrete states. To specify this solver, select fixed-step from the solver type list on the Solver pane. Then choose discrete from the adjacent integration method list.

10-9

10

Running a Simulation

Variable-step continuous solvers. These solvers decrease the simulation step size to increase accuracy when a system’s continuous states are changing rapidly and increase the step size to save simulation time when a system’s states are changing slowly. To specify a variable-step continuous solver for your model, select variable-step from the solver type list on the Solver pane. Then choose one of the following options from the adjacent integration method list.

• ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step solver; that is, in computing y(tn), it needs only the solution at the immediately preceding time point, y(tn–1). In general, ode45 is the best solver to apply as a first try for most problems. For this reason, ode45 is the default solver used by Simulink for models with continuous states. • ode23 is also based on an explicit Runge-Kutta (2,3) pair of Bogacki and Shampine. It can be more efficient than ode45 at crude tolerances and in the presence of mild stiffness. ode23 is a one-step solver. • ode113 is a variable-order Adams-Bashforth-Moulton PECE solver. It can be more efficient than ode45 at stringent tolerances. ode113 is a multistep solver; that is, it normally needs the solutions at several preceding time points to compute the current solution. • ode15s is a variable order solver based on the numerical differentiation formulas (NDFs). These are related to but are more efficient than the backward differentiation formulas, BDFs (also known as Gear’s method). Like ode113, ode15s is a multistep method solver. If you suspect that a problem is stiff, or if ode45 failed or was very inefficient, try ode15s. • ode23s is based on a modified Rosenbrock formula of order 2. Because it is a one-step solver, it can be more efficient than ode15s at crude tolerances. It can solve some kinds of stiff problems for which ode15s is not effective. • ode23t is an implementation of the trapezoidal rule using a “free” interpolant. Use this solver if the problem is only moderately stiff and you need a solution without numerical damping. • ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula with a first stage that is a trapezoidal rule step and a second stage that is a backward differentiation formula of order two. By construction, the same iteration matrix is used in evaluating both stages. Like ode23s, this solver can be more efficient than ode15s at crude tolerances.

10-10

The Simulation Parameters Dialog Box

Note For a stiff problem, solutions can change on a time scale that is very short compared to the interval of integration, but the solution of interest changes on a much longer time scale. Methods not designed for stiff problems are ineffective on intervals where the solution changes slowly because they use time steps small enough to resolve the fastest possible change. Jacobian matrices are generated numerically for ode15s and ode23s. For more information, see Shampine, L. F., Numerical Solution of Ordinary Differential Equations, Chapman & Hall, 1994.

Variable-Step Discrete Solver. Simulink provides a variable-step discrete solver that does no integration but does do zero-crossing detection (see “Zero-Crossing Detection” on page 2-19). Use this solver for models that have no continuous states and that have continuous signals requiring zero-crossing detection and/or have discrete blocks that operate at different sample times. Simulink uses this solver by default if you did not specify the fixed-step discrete solver and your model has no continuous states.

Simulink’s fixed-step discrete solver advances the simulation by fixed-size time steps. As a result, it can take a step even when nothing is happening in the model. By contrast, Simulink’s variable-step solver does not have to take a time step when nothing is happening in the model. Instead, it can adjust the step size to advance the simulation to the next point where something significant happens. Depending on the model, this can greatly reduce the number of steps and hence the time required to simulate a model. The follow multirate model illustrates how the variable-step solver can shorten simulation time.

This model generates outputs at two different rates, every 0.5 second and every 0.75 second. To capture both outputs, the fixed-step solver must take a time step every 0.25 second (the fundamental sample time for the model).

10-11

10

Running a Simulation

[0.0 0.25 0.5 0.75 1.0 1.25 ...]

By contrast, the variable-step solver need take a step only when the model actually generates an output.
[0.0 0.5 0.75 1.0 1.5 2.0 2.25 ...]

This significantly reduces the number of time steps required to simulate the model.

Solver Options
The default solver parameters provide accurate and efficient results for most problems. In some cases, however, tuning the parameters can improve performance. (For more information about tuning these parameters, see “Improving Simulation Performance and Accuracy” on page 10-41.) You can tune the selected solver by changing parameter values on the Solver pane.

Step Sizes
For variable-step solvers, you can set the maximum and suggested initial step size parameters. By default, these parameters are automatically determined, indicated by the value auto. For fixed-step solvers, you can set the fixed step size. The default is also auto.
Maximum step size. The Max step size parameter controls the largest time step the solver can take. The default is determined from the start and stop times.

t stop – t start h max = -----------------------------50 Generally, the default maximum step size is sufficient. If you are concerned about the solver’s missing significant behavior, change the parameter to prevent the solver from taking too large a step. If the time span of the simulation is very long, the default step size might be too large for the solver to find the solution. Also, if your model contains periodic or nearly periodic behavior and you know the period, set the maximum step size to some fraction (such as 1/4) of that period. In general, for more output points, change the refine factor, not the maximum step size. For more information, see “Refine output” on page 10-15.

10-12

The Simulation Parameters Dialog Box

Initial step size. By default, the solvers select an initial step size by examining the derivatives of the states at the start time. If the first step size is too large, the solver might step over important behavior. The initial step size parameter is a suggested first step size. The solver tries this step size but reduces it if error criteria are not satisfied. Minimum step size. Specifies the smallest time step the solver can take. If the

solver needs to take a smaller step to meet error tolerances, it issues a warning indicating the current effective relative tolerance. This parameter can be either a real number greater than zero or a two-element vector where the first element is the minimum step size and the second element is the maximum number of minimum step size warnings to be issued before issuing an error. Setting the second element to zero results in an error the first time the solver must take a step smaller than the specified minimum. This is equivalent to changing the minimum step size violation diagnostic to error on the Diagnostics panel. Setting the second element to -1 results in an unlimited number of warnings. This is also the default if the input is a scalar. The default values for this parameter are a minimum step size on the order of machine precision and an unlimited number of warnings.

Error Tolerances
The solvers use standard local error control techniques to monitor the error at each time step. During each time step, the solvers compute the state values at the end of the step and also determine the local error, the estimated error of these state values. They then compare the local error to the acceptable error, which is a function of the relative tolerance (rtol) and absolute tolerance (atol). If the error is greater than the acceptable error for any state, the solver reduces the step size and tries again: • Relative tolerance measures the error relative to the size of each state. The relative tolerance represents a percentage of the state’s value. The default, 1e-3, means that the computed state is accurate to within 0.1%. • Absolute tolerance is a threshold error value. This tolerance represents the acceptable error as the value of the measured state approaches zero. The error for the ith state, ei, is required to satisfy e i ≤ max (rtol × x i , atol i)

10-13

10

Running a Simulation

The following figure shows a plot of a state and the regions in which the acceptable error is determined by the relative tolerance and the absolute tolerance.

rtol*|x|
Region in which rtol determines acceptable error

State

Region in which atol determines acceptable error

atol Time If you specify auto (the default), Simulink sets the absolute tolerance for each state initially to 1e-6. As the simulation progresses, Simulink resets the absolute tolerance for each state to the maximum value that the state has assumed thus far times the relative tolerance for that state. Thus, if a state goes from 0 to 1 and reltol is 1e-3, then by the end of the simulation the abstol is set to 1e-3 also. If a state goes from 0 to 1000, then the abstol is set to 1. If the computed setting is not suitable, you can determine an appropriate setting yourself. You might have to run a simulation more than once to determine an appropriate value for the absolute tolerance. The Integrator, Transfer Fcn, State-Space, and Zero-Pole blocks allow you to specify absolute tolerance values for solving the model states that they compute or that determine their output. The absolute tolerance values that you specify for these blocks override the global settings in the Simulation Parameters dialog box. You might want to override the global setting in this way, if the global setting does not provide sufficient error control for all of your model’s states, for example, because they vary widely in magnitude.

The Maximum Order for ode15s
The ode15s solver is based on NDF formulas of orders one through five. Although the higher order formulas are more accurate, they are less stable. If your model is stiff and requires more stability, reduce the maximum order to 2 (the highest order for which the NDF formula is A-stable). When you choose the ode15s solver, the dialog box displays this parameter.

10-14

The Simulation Parameters Dialog Box

As an alternative, you can try using the ode23s solver, which is a fixed-step, lower order (and A-stable) solver.

Multitasking Options
If you select a fixed-step solver, the Solver pane of the Simulation Parameters dialog box displays a Mode options list. The list allows you to select one of the following simulation modes.
MultiTasking. This mode issues an error if it detects an illegal sample rate

transition between blocks, that is, a direct connection between blocks operating at different sample rates. In real-time multitasking systems, illegal sample rate transitions between tasks can result in a task’s output not being available when needed by another task. By checking for such transitions, multitasking mode helps you to create valid models of real-world multitasking systems, where sections of your model represent concurrent tasks. Use the Rate Transition block to eliminate illegal rate transitions from your model. For more information, see “Models with Multiple Sample Rates” in the online documentation for the Real-Time Workshop for more information.
SingleTasking. This mode does not check for sample rate transitions among blocks. This mode is useful when you are modeling a single-tasking system. In such systems, task synchronization is not an issue. Auto. This option causes Simulink to use single-tasking mode if all blocks operate at the same rate and multitasking mode if the model contains blocks operating at different rates.

Output Options
The Output options area of the dialog box enables you to control how much output the simulation generates. You can choose from three options: • Refine output • Produce additional output • Produce specified output only
Refine output. The Refine output choice provides additional output points when the simulation output is too coarse. This parameter provides an integer number of output points between time steps; for example, a refine factor of 2

10-15

10

Running a Simulation

provides output midway between the time steps, as well as at the steps. The default refine factor is 1. To get smoother output, it is much faster to change the refine factor instead of reducing the step size. When the refine factor is changed, the solvers generate additional points by evaluating a continuous extension formula at those points. Changing the refine factor does not change the steps used by the solver. The refine factor applies to variable-step solvers and is most useful when you are using ode45. The ode45 solver is capable of taking large steps; when graphing simulation output, you might find that output from this solver is not sufficiently smooth. If this is the case, run the simulation again with a larger refine factor. A value of 4 should provide much smoother results.

Note This option does not help the solver to locate zero crossings (see “Zero-Crossing Detection” on page 2-19).

Produce additional output. The Produce additional output choice enables you to specify directly those additional times at which the solver generates output. When you select this option, Simulink displays an Output Times field on the Solver pane. Enter a MATLAB expression in this field that evaluates to an additional time or a vector of additional times. The additional output is produced using a continuous extension formula at the additional times. Unlike the refine factor, this option changes the simulation step size so that time steps coincide with the times that you have specified for additional output. Produce specified output only. The Produce specified output only choice provides simulation output only at the specified output times. This option changes the simulation step size so that time steps coincide with the times that you have specified for producing output. This choice is useful when you are comparing different simulations to ensure that the simulations produce output at the same times.

10-16

The Simulation Parameters Dialog Box

Comparing Output options. A sample simulation generates output at these times. 0, 2.5, 5, 8.5, 10

Choosing Refine output and specifying a refine factor of 2 generates output at these times.
0, 1.25, 2.5, 3.75, 5, 6.75, 8.5, 9.25, 10

Choosing the Produce additional output option and specifying [0:10] generates output at these times
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

and perhaps at additional times, depending on the step size chosen by the variable-step solver. Choosing the Produce specified output only option and specifying [0:10] generates output at these times.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

In general, you should specify output points as integers times a fundamental step size. For example,
[1:100]*0.01

is more accurate than
[1:0.01:100]

10-17

10

Running a Simulation

The Workspace I/O Pane
You can direct simulation output to workspace variables and get input and initial states from the workspace. On the Simulation Parameters dialog box, select the Workspace I/O tab. This pane appears.

Loading Input from the Base Workspace
Simulink can apply input from a model’s base workspace to the model’s top-level inports during a simulation run. To specify this option, select the Input box in the Load from workspace area of the Workspace I/O pane. Then, enter an external input specification (see below) in the adjacent edit box and select Apply. The external (i.e., from workspace) input can take any of the following forms.
Array. To use this format, select Input in the Load from workspace pane and select the Array option from the Format list on the Workspace I/O pane. Selecting this option causes Simulink to evaluate the expression next to the Input check box and use the result as the input to the model.

The expression must evaluate to a real (noncomplex) matrix of data type double. The first column of the matrix must be a vector of times in ascending order. The remaining columns specify input values. In particular, each column represents the input for a different Inport block signal (in sequential order) and each row is the input value for the corresponding time point. Simulink linearly

10-18

The Simulation Parameters Dialog Box

interpolates or extrapolates input values as necessary if the Interpolate data option is selected for the corresponding Inport. The total number of columns of the input matrix must equal n + 1, where n is the total number of signals entering the model’s inports. The default input expression for a model is [t,u] and the default input format is Array. So if you define t and u in the base workspace, you need only select the Input option to input data from the model’s base workspace. For example, suppose that a model has two inports, one of which accepts two signals and the other of which accepts one signal. Also, suppose that the base workspace defines u and t as follows.
t = (0:0.1:1)'; u = [sin(t), cos(t), 4*cos(t)];

Note The array input format allows you to load only real (noncomplex) scalar or vector data of type double. Use the structure format to input complex data, matrix (2-D) data, and/or data types other than double.

Structure with time. Simulink can read data from the workspace in the form of a

structure whose name is specified in the Input text field. The input structure must have two top-level fields: time and signals. The time field contains a column vector of the simulation times. The signals field contains an array of substructures, each of which corresponds to a model input port. Each signals substructure must contain two fields named values and dimensions, respectively. The values field must contain an array of inputs for the corresponding input port where each input corresponds to a time point specified by the time field. The dimensions field specifies the dimensions of the input. If each input is a scalar or vector (1-D array) value, the dimensions field must be a scalar value that specifies the length of the vector (1 for a scalar). If each input is a matrix (2-D array), the dimensions field must be a two-element vector whose first element specifies the number of rows in the matrix and whose second element specifies the number of columns.

10-19

10

Running a Simulation

Note You must set the Port dimensions parameter of the Inport to be the same value as the dimensions field of the corresponding input structure. If the values differ, Simulink stops and displays an error message when you try to simulate the model.

If the inputs for a port are scalar or vector values, the values field must be an M-by-N array where M is the number of time points specified by the time field and N is the length of each vector value. For example, the following code creates an input structure for loading 11 time samples of a two-element signal vector of type int8 into a model with a single input port.
a.time = (0:0.1:1)'; c1 = int8([0:1:10]'); c2 = int8([0:10:100]'); a.signals(1).values = [c1 c2]; a.signals(1).dimensions = 2;

To load this data into the model’s inport, you would select the Input option on the Workspace I/O pane and enter a in the input expression field. If the inputs for a port are matrices (2-D arrays), the values field must be an M-by-N-by-T array where M and N are the dimensions of each matrix input and T is the number of time points. For example, suppose that you want to input 51 time samples of a 4-by-5 matrix signal into one of your model’s input ports. Then, the corresponding dimensions field of the workspace structure must equal [4 5] and the values array must have the dimensions 4-by-5-by-51. As another example, consider the following model, which has two inputs.

Suppose that you want to input a sine wave into the first port and a cosine wave into the second port. To do this, define a vector, a, as follows, in the base workspace.
a.time = (0:0.1:1)'; a.signals(1).values = sin(a.time);

10-20

The Simulation Parameters Dialog Box

a.signals(1).dimensions = 1; a.signals(2).values = cos(a.time); a.signals(2).dimensions = 1;

Select the Input box for this model, enter a in the adjacent text field, and select StructureWithTime as the I/O format.

Note Simulink can read back simulation data saved to the workspace in the Structure with time output format. See “Structure with time” on page 10-23 for more information.

Structure. The Structure format is the same as the Structure with time format except that the time field is empty. For example, in the preceding example, you could set the time field as follows: a.time = []

In this case, Simulink reads the input for the first time step from the first element of an inport’s value array, the value for the second time step from the second element of the value array, etc.

Note Simulink can read back simulation data saved to the workspace in the Structure output format. See “Structure” on page 10-24 for more information.

Per-Port Structures. This format consists of a separate structure-with-time or

structure-without-time for each port. Each port’s input data structure has only one signals field. To specify this option, enter the names of the structures in the Input text field as a comma-separated list, in1, in2, ..., inN, where in1 is the data for your model’s first port, in2 for the second inport, and so on.
Time Expression. The time expression can be any MATLAB expression that evaluates to a row vector equal in length to the number of signals entering the model’s inports. For example, suppose that a model has one vector inport that accepts two signals. Furthermore, suppose that timefcn is a user-defined function that returns a row vector two elements long. The following are valid input time expressions for such a model.

10-21

10

Running a Simulation

'[3*sin(t), cos(2*t)]' '4*timefcn(w*t)+7'

Simulink evaluates the expression at each step of the simulation, applying the resulting values to the model’s inports. Note that Simulink defines the variable t when it runs the simulation. Also, you can omit the time variable in expressions for functions of one variable. For example, Simulink interprets the expression sin as sin(t).

Saving Output to the Workspace
You can specify return variables by selecting the Time, States, and/or Output check boxes in the Save to workspace area of this dialog box pane. Specifying return variables causes Simulink to write values for the time, state, and output trajectories (as many as are selected) into the workspace. To assign values to different variables, specify those variable names in the fields to the right of the check boxes. To write output to more than one variable, specify the variable names in a comma-separated list. Simulink saves the simulation times in the vector specified in the Save to Workspace area.

Note Simulink saves the output to the workspace at the base sample rate of the model. Use a To Workspace block if you want to save output at a different sample rate.

The Save options area enables you to specify the format and restrict the amount of output saved. Format options for model states and outputs are listed below.
Array. If you select this option, Simulink saves a model’s states and outputs in

a state and output array, respectively. The state matrix has the name specified in the Save to Workspace area (for example, xout). Each row of the state matrix corresponds to a time sample of the model’s states. Each column corresponds to an element of a state. For example, suppose that your model has two continuous states, each of which is a two-element vector. Then the first two elements of each row of the state

10-22

The Simulation Parameters Dialog Box

matrix contains a time sample of the first state vector. The last two elements of each row contain a time sample of the second state vector. The model output matrix has the name specified in the Save to Workspace area (for example, yout). Each column corresponds to a model outport, each row to the outputs at a specific time.

Note You can use array format to save your model’s outputs and states only if the outputs are either all scalars or all vectors (or all matrices for states), are either all real or all complex, and are all of the same data type. Use the Structure or StructureWithTime output formats (see the following) if your model’s outputs and states do not meet these conditions.

Structure with time. If you select this format, Simulink saves the model’s states

and outputs in structures having the names specified in the Save to
Workspace area (for example, xout and yout).

The structure used to save outputs has two top-level fields: time and signals. The time field contains a vector of the simulation times. The signals field contains an array of substructures, each of which corresponds to a model outport. Each substructure has four fields: values, dimensions, label, and blockName. The values field contains the outputs for the corresponding outport. If the outputs are scalars or vectors, the values field is a matrix each of whose rows represents an output at the time specified by the corresponding element of the time vector. If the outputs are matrix (2-D) values, the values field is a 3-D array of dimensions M-by-N-by-T where M-by-N is the dimensions of the output signal and T is the number of output samples. If T = 1, MATLAB drops the last dimension. Therefore, the values field is an M-by-N matrix. The dimensions field specifies the dimensions of the output signal. The label field specifies the label of the signal connected to the outport or the type of state (continuous or discrete). The blockName field specifies the name of the corresponding outport or block with states. The structure used to save states has a similar organization. The states structure has two top-level fields: time and signals. The time field contains a vector of the simulation times. The signals field contains an array of substructures, each of which corresponds to one of the model’s states. Each signals structure has four fields: values, dimension, label, and blockName. The values field contains time samples of a state of the block specified by the

10-23

10

Running a Simulation

blockName field. The label field for built-in blocks indicates the type of state: either CSTATE (continuous state) or DSTATE (discrete state). For S-Function blocks, the label contains whatever name is assigned to the state by the S-Function block.

The time samples of a state are stored in the values field as a matrix of values. Each row corresponds to a time sample. Each element of a row corresponds to an element of the state. If the state is a matrix, the matrix is stored in the values array in column-major order. For example, suppose that the model includes a 2-by-2 matrix state and that Simulink logs 51 samples of the state during a simulation run. The values field for this state would contain a 51-by-4 matrix where each row corresponds to a time sample of the state and where the first two elements of each row correspond to the first column of the sample and the last two elements correspond to the second column of the sample.
Structure. This format is the same as the preceding except that Simulink does not store simulation times in the time field of the saved structure. Per-Port Structures. This format consists of a separate structure-with-time or structure-without-time for each output port. Each output data structure has only one signals field. To specify this option, enter the names of the structures in the Output text field as a comma-separated list, out1, out2, ..., outN, where out1 is the data for your model’s first port, out2 for the second inport, and so on.

Saving data to the workspace can slow down the simulation and consume memory. To avoid this, you can limit the number of samples saved to the most recent samples or you can skip samples by applying a decimation factor. To set a limit on the number of data samples saved, select the check box labeled Limit data points to last and specify the number of samples to save. To apply a decimation factor, enter a value in the field to the right of the Decimation label. For example, a value of 2 saves every other point generated.

Loading and Saving States
Initial conditions, which are applied to the system at the start of the simulation, are generally set in the blocks. You can override initial conditions set in the blocks by specifying them in the States area of this pane. You can also save the final states for the current simulation run and apply them to a subsequent simulation run. This feature can be useful when you want to save a steady-state solution and restart the simulation at that known

10-24

The Simulation Parameters Dialog Box

state. The states are saved in the format that you select in the Save options area of the Workspace I/O pane. To save the final states (the values of the states at the termination of the simulation), select the Final State check box and enter a variable in the adjacent edit field. To load states, select the Initial State check box and specify the name of a variable that contains the initial state values. This variable can be a matrix or a structure of the same form as is used to save final states. This allows Simulink to set the initial states for the current session to the final states saved in a previous session, using the Structure or Structure with time format. If the check box is not selected or the state array is empty ([]), Simulink uses the initial conditions defined in the blocks.

The Diagnostics Pane
You can indicate the desired action for many types of events or conditions that can be encountered during a simulation by selecting the Diagnostics tab on the Simulation Parameters dialog box. This dialog box appears.

The dialog box includes the following options.

10-25

10

Running a Simulation

Consistency Checking
Consistency checking is a debugging tool that validates certain assumptions made by Simulink ODE solvers. Its main use is to make sure that S-functions adhere to the same rules as Simulink built-in blocks. Because consistency checking results in a significant decrease in performance (up to 40%), it should generally be set to off. Use consistency checking to validate your S-functions and to help you determine the cause of unexpected simulation results. To perform efficient integration, Simulink saves (caches) certain values from one time step for use in the next time step. For example, the derivatives at the end of a time step can generally be reused at the start of the next time step. The solvers take advantage of this to avoid redundant derivative calculations. Another purpose of consistency checking is to ensure that blocks produce constant output when called with a given value of t (time). This is important for the stiff solvers (ode23s and ode15s) because, while calculating the Jacobian, the block’s output functions can be called many times at the same value of t. When consistency checking is enabled, Simulink recomputes the appropriate values and compares them to the cached values. If the values are not the same, a consistency error occurs. Simulink compares computed values for these quantities: • Outputs • Zero crossings • Derivatives • States

Bounds checking
This option causes Simulink to check whether a block writes outside the memory allocated to it during simulation. Typically this can happen only if your model includes a user-written S-function that has a bug. If enabled, this check is performed for every block in the model every time the block is executed. As a result, enabling this option slows down model execution considerably. Thus, to avoid slowing down model execution needlessly, you should enable the option only if you suspect that your model contains a user-written S-function that has a bug. See Writing S-Functions for more information on using this option.

10-26

The Simulation Parameters Dialog Box

Configuration options
This control lists abnormal types of events that can occur during execution of the model. For each event type, you can choose whether you want no message, a warning message, or an error message. A warning message does not terminate a simulation, but an error message does.
Event -1 sample time in source Algebraic loop Description

A source block (e.g., a Sine Wave block) specifies a sample time of -1. Simulink detected an algebraic loop while simulating the model. See “Algebraic Loops” on page 2-24 for more information. If you set this option to Error, Simulink displays an error message and highlights the portion of the block diagram that comprises the loop (see “Highlighting Algebraic Loops” on page 2-26). Simulink detected a block priority specification error while simulating the model. The Product block detected a singular matrix while inverting one of its inputs in matrix multiplication mode. The value of a signal or parameter is too large to be represented by the signal or parameter’s data type. See “Working with Data Types” on page 7-2 for more information. The Unit Delay block, which is a discrete block, inherits a continuous sample time from the block connected to its input. A 32-bit integer value was converted to a floating-point value. Such a conversion can result in a loss of precision. See “Working with Data Types” on page 7-2 for more information.

Block priority violation Check for singular matrix

Data overflow

Discrete used as continuous

int32 to float conversion

10-27

10

Running a Simulation

Event Invalid FcnCall Connection

Description (Continued)

Simulink has detected an incorrect use of a Function-Call subsystem in your model (see the “Function-call systems” examples in the Simulink “Subsystem Semantics” library for examples of invalid uses of Function-Call subsystems. Disabling this error message can lead to invalid simulation results. The next simulation step is smaller than the minimum step size specified for the model. This can occur if the specified error tolerance for the model requires a step size smaller than the specified minimum step size. See “Step Sizes” on page 10-12 and “Error Tolerances” on page 10-13 for more information. An invalid rate transition occurred between two blocks operating in multitasking mode (see “Multitasking Options” on page 10-15). Computation of the output of the block required converting the parameter’s specified type to a type having a smaller range of values (e.g., from uint32 to uint8). This diagnostic applies only to named tunable parameters. The data type of the parameter could not accommodate the parameter’s value. Computation of the output of the block required converting the specified data type of the parameter to a less precise data type (e.g., from double to uint8). A block was encountered that has not been upgraded to use features of the current release.

Min step size violation

Multitask rate transition

Parameter downcast

Parameter overflow Parameter precision loss

S-function upgrades needed

10-28

The Simulation Parameters Dialog Box

Event Signal label mismatch

Description (Continued)

The simulation encountered virtual signals that have a common source signal but different labels (see “Virtual Signals” on page 6-3). A rate transition occurred between two blocks operating in single-tasking mode (see “Multitasking Options” on page 10-15). Model contains a block with an unconnected input. Model contains a block with an unconnected output. Model contains an unconnected line. Simulink could not infer the data type of a signal during data type propagation. A Data Type Conversion block is used where no type conversion is necessary. A vector-to-matrix or matrix-to-vector conversion occurred at a block input (see “Vector or Matrix Input Conversion Rules” on page 6-9).

SingleTask rate transition

Unconnected block input Unconnected block output Unconnected line Underspecified data types Unneeded type conversions Vector/Matrix conversion

10-29

10

Running a Simulation

The Advanced Pane
The Advanced pane allows you to set various options that affect simulation performance.

Model parameter configuration
Inline parameters. By default you can modify (“tune”) many block parameters during simulation (see “Tunable Parameters” on page 2-8). Selecting this option makes all parameters nontunable by default. Making parameters nontunable allows Simulink to move blocks whose outputs depend only on block parameter values outside the simulation loop, thereby speeding up simulation of the model and execution of code generated from the model. When this option is selected, Simulink disables the parameter controls of the block dialog boxes for the blocks in your model to prevent you from accidentally modifying the block parameters.

Simulink allows you to override the Inline parameters option for parameters whose values are defined by variables in the MATLAB workspace. To specify that such a parameter remain tunable, specify the parameter as global in the Model Parameter Configuration dialog box (see “Model Parameter Configuration Dialog Box” on page 10-34). To display the dialog, select the adjacent Configure button. To tune a global parameter, change the value of the corresponding workspace variable and choose Update Diagram (Ctrl+D) from the Simulink Edit menu.

10-30

The Simulation Parameters Dialog Box

Note You cannot tune inlined parameters in code generated from a model. However, when simulating a model, you can tune an inlined parameter if its value derives from a workspace variable. For example, suppose that a model has a Gain block whose Gain parameter is inlined and equals a, where a is a variable defined in the model’s workspace. When simulating the model, Simulink disables the Gain parameter field, thereby preventing you from using the block’s dialog box to change the gain. However, you can still tune the gain by changing the value of a at the MATLAB command line and updating the diagram.

Optimizations
Block reduction. Replaces a group of blocks with a synthesized block, thereby

speeding up execution of the model.
Boolean logic signals. Causes blocks that accept Boolean signals to require Boolean signals. If this option is off, blocks that accept inputs of type boolean also accept inputs of type double. For example, consider the following model.

This model connects signals of type double to a Logical Operator block, which accepts inputs of type boolean. If the Boolean logic signals option is on, this model generates an error when executed. If the Boolean logic signals option is off, this model runs without error.

10-31

10

Running a Simulation

Note This option allows the current version of Simulink to run models that were created by earlier versions of Simulink that supported only signals of type double.

Conditional input branch. This optimization applies to models containing Switch

and Multiport Switch blocks. When enabled, this optimization executes only the blocks required to compute the control input and the data input selected by the control input at each time step for each Switch or Multiport Switch block in the model. Similarly, code generated from the model by Real-Time Workshop executes only the code needed to compute the control input and the selected data input. This optimization speeds simulation and execution of code generated from the model. At the beginning of the simulation or code generation, Simulink examines each signal path feeding a switch block data input to determine the portion of the path that can be optimized. The optimizable portion of the path is that part of the signal path that stretches from the corresponding data input back to the first block that is a nonvirtual subsystem, has continuous or discrete states, or detects zero crossings. Simulink encloses the optimizable portion of the signal path in an invisible atomic subsystem. During simulation, if a switch data input is not selected, Simulink executes only the nonoptimizable portion of the signal path feeding the input. If the data input is selected, Simulink executes both the nonoptimizable and the optimizable portion of the input signal path.
Parameter pooling. This option is used for code generation (see the Real-Time Workshop documentation for more information). Leave this option on if you are not doing code generation. Signal storage reuse. Causes Simulink to reuse memory buffers allocated to store

block input and output signals. If this option is off, Simulink allocates a separate memory buffer for each block’s outputs. This can substantially increase the amount of memory required to simulate large models, so you should select this option only when you need to debug a model. In particular, you should disable signal storage reuse if you need to • Debug a C-MEX S-function

10-32

The Simulation Parameters Dialog Box

• Use a floating Scope or Display block to inspect signals in a model that you are debugging Simulink opens an error dialog if Signal storage reuse is enabled and you attempt to use a floating Scope or Display block to display a signal whose buffer has been reused.
Zero-crossing detection. Enables zero-crossing detection during variable-step simulation of the model. For most models, this speeds up simulation by enabling the solver to take larger time steps. If a model has extreme dynamic changes, disabling this option can speed up the simulation but can also decrease the accuracy of simulation results. See “Zero-Crossing Detection” on page 2-19 for more information.

You can override this optimization on a block-by-block basis for the following types of blocks. Abs Backlash Dead Zone Enable Hit Crossing If Integrator MinMax Relay Relational Operator Saturation Sign Step Switch Switch Case Trigger

To override zero-crossing detection for an instance of one of these blocks, open the block’s parameter dialog box and uncheck the Enable zero crossing detection option. You can enable or disable zero-crossing selectively for these blocks only if zero-crossing detection is enabled globally, i.e., Zero-crossing optimization is selected on the Advanced pane of the Simulation Parameters dialog box.

10-33

10

Running a Simulation

Model Verification block control
This parameter allows you to enable or disable model verification blocks in the current model either globally or locally. Select one of the following options: • Use local settings Enables or disables blocks based on the value of the Enable Assertion parameter of each block. If a block’s Enable Assertion parameter is on, the block is enabled; otherwise, the block is disabled. • Enable all Enables all model verification blocks in the model regardless of the settings of their Enable Assertion parameters. • Disable all Disables all model verification blocks in the model regardless of the settings of their Enable Assertion parameters.

Model Parameter Configuration Dialog Box
The Model Parameter Configuration dialog box allows you to override the Inline parameters option (see “Model parameter configuration” on page 10-30) for selected parameters.

The dialog box has the following controls.
Source list. Displays a list of workspace variables. The options are

10-34

The Simulation Parameters Dialog Box

• MATLAB workspace List all variables in the MATLAB workspace that have numeric values. • Referenced workspace variables List only those variables referenced by the model.
Refresh list. Updates the source list. Click this button if you have added a

variable to the workspace since the last time the list was displayed.
Add to table. Adds the variables selected in the source list to the adjacent table

of tunable parameters.
New. Defines a new parameter and adds it to the list of tunable parameters. Use this button to create tunable parameters that are not yet defined in the MATLAB workspace.

Note This option does not create the corresponding variable in the MATLAB workspace. You must create the variable yourself.

Storage class. Used for code generation. See the Real-Time Workshop documentation for more information. Storage type qualifier. Used for code generation. See the Real-Time Workshop documentation for more information.

Production Hardware Characteristics
This setting is intended for use in modeling, simulating, and generating code for digital systems. It allows you to specify the sizes of the data types supported by the system being modeled. Simulink uses this information to automate the choice of data types for signals output by some blocks, e.g., the Product and Gain blocks. Select one of the following settings from the list: • Microprocessor Specifies that this model represents a microprocessor-based digital system whose integer word lengths correspond to the C data types listed in the control below the Production hardware characteristics list.

10-35

10

Running a Simulation

The entry for each C data type specifies the length in bits of the corresponding microprocessor word. You can change the length by selecting the data type and entering a new length in the adjacent Value field. • Unconstrained integer sizes Specifies that the hardware implementation of the modeled system imposes no size constraints on the choice of integer data types used to perform computations. This might be the case, for example, if the production hardware is intended to be a custom integrated circuit.

10-36

Diagnosing Simulation Errors

Diagnosing Simulation Errors
If errors occur during a simulation, Simulink halts the simulation, opens the subsystems that caused the error (if necessary), and displays the errors in the Simulation Diagnostics Viewer. The following section explains how to use the viewer to determine the cause of the errors.

Simulation Diagnostic Viewer
The viewer comprises an Error Summary pane and an Error Message pane.

Click to display error source.

Error Summary Pane
The upper pane lists the errors that caused Simulink to terminate the simulation. The pane displays the following information for each error.
Message. Message type (for example, block error, warning, log) Source. Name of the model element (for example, a block) that caused the error Reported by. Component that reported the error (for example, Simulink, Stateflow, Real-Time Workshop, etc.) Summary. Error message, abbreviated to fit in the column

10-37

10

Running a Simulation

You can remove any of these columns of information to make more room for the others. To remove a column, select the viewer’s View menu and uncheck the corresponding item.

Error Message Pane
The lower pane initially contains the contents of the first error message listed in the top pane. You can display the contents of other messages by clicking their entries in the upper pane. In addition to displaying the Diagnostic Viewer, Simulink also opens (if necessary) the subsystem that contains the first error source and highlights the source.

You can display the sources of other errors by clicking anywhere in the error message in the upper pane, by clicking the name of the error source in the error message (highlighted in blue), or by selecting the Open button on the viewer.

Changing Font Size
To change the size of the font used to display errors, select Font Size from the viewer’s menu bar. A menu of font sizes appears. Select the desired font size from the menu.

Creating Custom Simulation Error Messages
The Simulink Diagnostic Viewer displays the output of any instance of the MATLAB error function executed during a simulation, including instances invoked by block or model callbacks or S-functions that you create or that are executed by the MATLAB Function block. Thus, you can use the MATLAB error function in callbacks and S-functions or in the MATLAB Function block to create simulation error messages specific to your application.

10-38

Diagnosing Simulation Errors

For example, in the following model,

the MATLAB Function block invokes the following function
function y=check_signal(x) if x<0 error('Signal is negative.'); else y=x; end

Executing this model displays an error message in the Simulation Diagnostics viewer.

Including Hyperlinks in Error Messages
You can include hyperlinks to blocks, text files, and directories. To include a hyperlink to a block, path, or directory, include the item’s path in the error message enclosed in quotation marks, e.g., • error ('Error evaluating parameter in block "mymodel/Mu"') displays a text hyperlink to the block Mu in the current model in the error message. Clicking the hyperlink displays the block in the model window.

10-39

10

Running a Simulation

• error ('Error reading data from "c:/work/test.data"') displays a text hyperlink to the file test.data in the error message. Clicking the link displays the file in your preferred MATLAB editor. • error ('Could not find data in directory "c:/work"') displays a text hyperlink to the c:/work directory. Clicking the link opens a system command window (shell) and sets its working directory to c:/work.

Note The text hyperlink is enabled only if the corresponding block exists in the current model or if the corresponding file or directory exists on the user’s system.

10-40

Improving Simulation Performance and Accuracy

Improving Simulation Performance and Accuracy
Simulation performance and accuracy can be affected by many things, including the model design and choice of simulation parameters. The solvers handle most model simulations accurately and efficiently with their default parameter values. However, some models yield better results if you adjust solver and simulation parameters. Also, if you know information about your model’s behavior, your simulation results can be improved if you provide this information to the solver.

Speeding Up the Simulation
Slow simulation speed can have many causes. Here are a few: • Your model includes a MATLAB Fcn block. When a model includes a MATLAB Fcn block, the MATLAB interpreter is called at each time step, drastically slowing down the simulation. Use the built-in Fcn block or Math Function block whenever possible. • Your model includes an M-file S-function. M-file S-functions also cause the MATLAB interpreter to be called at each time step. Consider either converting the S-function to a subsystem or to a C-MEX file S-function. • Your model includes a Memory block. Using a Memory block causes the variable-order solvers (ode15s and ode113) to be reset back to order 1 at each time step. • The maximum step size is too small. If you changed the maximum step size, try running the simulation again with the default value (auto). • Did you ask for too much accuracy? The default relative tolerance (0.1% accuracy) is usually sufficient. For models with states that go to zero, if the absolute tolerance parameter is too small, the simulation can take too many steps around the near-zero state values. See the discussion of error in “Error Tolerances” on page 10-13. • The time scale might be too long. Reduce the time interval. • The problem might be stiff but you are using a nonstiff solver. Try using ode15s. • The model uses sample times that are not multiples of each other. Mixing sample times that are not multiples of each other causes the solver to take small enough steps to ensure sample time hits for all sample times.

10-41

10

Running a Simulation

• The model contains an algebraic loop. The solutions to algebraic loops are iteratively computed at every time step. Therefore, they severely degrade performance. For more information, see “Algebraic Loops” on page 2-24. • Your model feeds a Random Number block into an Integrator block. For continuous systems, use the Band-Limited White Noise block in the Sources library.

Improving Simulation Accuracy
To check your simulation accuracy, run the simulation over a reasonable time span. Then, either reduce the relative tolerance to 1e-4 (the default is 1e-3) or reduce the absolute tolerance and run it again. Compare the results of both simulations. If the results are not significantly different, you can feel confident that the solution has converged. If the simulation misses significant behavior at its start, reduce the initial step size to ensure that the simulation does not step over the significant behavior. If the simulation results become unstable over time, • Your system might be unstable. • If you are using ode15s, you might need to restrict the maximum order to 2 (the maximum order for which the solver is A-stable) or try using the ode23s solver. If the simulation results do not appear to be accurate, • For a model that has states whose values approach zero, if the absolute tolerance parameter is too large, the simulation takes too few steps around areas of near-zero state values. Reduce this parameter value or adjust it for individual states in the Integrator dialog box. • If reducing the absolute tolerances does not sufficiently improve the accuracy, reduce the size of the relative tolerance parameter to reduce the acceptable error and force smaller step sizes and more steps.

10-42

Running a Simulation Programmatically

Running a Simulation Programmatically
Entering simulation commands in the MATLAB Command Window or from an M-file enables you to run unattended simulations. You can perform Monte Carlo analysis by changing the parameters randomly and executing simulations in a loop. You can run a simulation from the command line using the sim command or the set_param command. Both are described below.

Using the sim Command
The full syntax of the command that runs the simulation is
[t,x,y] = sim(model, timespan, options, ut);

Only the model parameter is required. Parameters not supplied on the command are taken from the Simulation Parameters dialog box settings. For detailed syntax for the sim command, see the documentation for the sim command. The options parameter is a structure that supplies additional simulation parameters, including the solver name and error tolerances. You define parameters in the options structure using the simset command (see simset). The simulation parameters are discussed in “The Simulation Parameters Dialog Box” on page 10-8.

Using the set_param Command
You can use the set_param command to start, stop, pause, or continue a simulation, or update a block diagram. The format of the set_param command for this use is
set_param('sys', 'SimulationCommand', 'cmd')

where 'sys' is the name of the system and 'cmd' is 'start', 'stop', 'pause', 'continue', or 'update'. Similarly, you can use the get_param command to check the status of a simulation. The format of the get_param command for this use is
get_param('sys', 'SimulationStatus')

Simulink returns 'stopped', 'initializing', 'running', 'paused', 'updating', 'terminating', and 'external' (used with Real-Time Workshop).

10-43

10

Running a Simulation

10-44

11
Analyzing Simulation Results
The following sections explain how to use Simulink tools for analyzing the results of simulations. Viewing Output Trajectories (p. 11-2) Linearizing Models (p. 11-4) Finding Steady-State Points (p. 11-7) Explains how to display your output directories. Describes functions that extract a linear state-space model from a Simulink model. How to use Simulink’s trim command to determine steady-state points of a system represented by a Simulink model.

11

Analyzing Simulation Results

Viewing Output Trajectories
Output trajectories from Simulink can be plotted using one of three methods: • Feed a signal into either a Scope or an XY Graph block. • Write output to return variables and use MATLAB plotting commands. • Write output to the workspace using To Workspace blocks and plot the results using MATLAB plotting commands.

Using the Scope Block
You can use display output trajectories on a Scope block during a simulation. This simple model shows an example of the use of the Scope block.

The display on the Scope shows the output trajectory. The Scope block enables you to zoom in on an area of interest or save the data to the workspace. The XY Graph block enables you to plot one signal against another.

Using Return Variables
By returning time and output histories, you can use MATLAB plotting commands to display and annotate the output trajectories.

The block labeled Out is an Outport block from the Signals & Systems library. The output trajectory, yout, is returned by the integration solver. For more information, see “The Workspace I/O Pane” on page 10-18. You can also run this simulation from the Simulation menu by specifying variables for the time, output, and states on the Workspace I/O pane of the Simulation Parameters dialog box. You can then plot these results using
plot(tout,yout)

11-2

Viewing Output Trajectories

Using the To Workspace Block
The To Workspace block can be used to return output trajectories to the MATLAB workspace. The model below illustrates this use.

The variables y and t appear in the workspace when the simulation is complete. You store the time vector by feeding a Clock block into a To Workspace block. You can also acquire the time vector by entering a variable name for the time on the Workspace I/O pane of the Simulation Parameters dialog box, for menu-driven simulations, or by returning it using the sim command (see “The Workspace I/O Pane” on page 10-18 for more information). The To Workspace block can accept an array input, with each input element’s trajectory stored in the resulting workspace variable.

11-3

11

Analyzing Simulation Results

Linearizing Models
Simulink provides the linmod, linmod2, and dlinmod functions to extract linear models in the form of the state-space matrices A, B, C, and D. State-space matrices describe the linear input-output relationship as · x = Ax + Bu y = Cx + Du where x, u, and y are state, input, and output vectors, respectively. For example, the following model is called lmod.

To extract the linear model of this Simulink system, enter this command.
[A,B,C,D] = linmod('lmod') A = -2 -1 -1 1 0 0 0 1 -1 B = 1 0 0 C = 0 1 0 0 0 -1 D = 0 1

Inputs and outputs must be defined using Inport and Outport blocks from the Signals & Systems library. Source and sink blocks do not act as inputs and

11-4

Linearizing Models

outputs. Inport blocks can be used in conjunction with source blocks, using a Sum block. Once the data is in the state-space form or converted to an LTI object, you can apply functions in the Control System Toolbox for further analysis: • Conversion to an LTI object
sys = ss(A,B,C,D);

• Bode phase and magnitude frequency plot bode(A,B,C,D) or bode(sys) • Linearized time response step(A,B,C,D) or step(sys) impulse(A,B,C,D) or impulse(sys) lsim(A,B,C,D,u,t) or lsim(sys,u,t) You can use other functions in the Control System Toolbox and Robust Control Toolbox for linear control system design. When the model is nonlinear, an operating point can be chosen at which to extract the linearized model. The nonlinear model is also sensitive to the perturbation sizes at which the model is extracted. These must be selected to balance the tradeoff between truncation and roundoff error. Extra arguments to linmod specify the operating point and perturbation points.
[A,B,C,D] = linmod('sys', x, u, pert, xpert, upert)

For discrete systems or mixed continuous and discrete systems, use the function dlinmod for linearization. This has the same calling syntax as linmod except that the second right-hand argument must contain a sample time at which to perform the linearization.

Linearization Using the 'v5' algorithm
Using linmod with the 'v5' option to linearize a model that contains Derivative or Transport Delay blocks can be troublesome. Before linearizing, replace these blocks with specially designed blocks that avoid the problems. These blocks are in the Simulink Extras library in the Linearization sublibrary. You access the Extras library by opening the Blocksets & Toolboxes icon: • For the Derivative block, use the Switched derivative for linearization.

11-5

11

Analyzing Simulation Results

• For the Transport Delay block, use the Switched transport delay for linearization. (Using this block requires that you have the Control System Toolbox.) When using a Derivative block, you can also try to incorporate the derivative term in other blocks. For example, if you have a Derivative block in series with a Transfer Fcn block, it is better implemented (although this is not always possible) with a single Transfer Fcn block of the form s --------s+a In this example, the blocks on the left of this figure can be replaced by the block on the right.

11-6

Finding Steady-State Points

Finding Steady-State Points
The Simulink trim function uses a Simulink model to determine steady-state points of a dynamic system that satisfy input, output, and state conditions that you specify. Consider, for example, this model, called lmod.

You can use the trim function to find the values of the input and the states that set both outputs to 1. First, make initial guesses for the state variables (x) and input values (u), then set the desired value for the output (y).
x = [0; 0; 0]; u = 0; y = [1; 1];

Use index variables to indicate which variables are fixed and which can vary.
ix = []; iu = []; iy = [1;2]; % Don't fix any of the states % Don't fix the input % Fix both output 1 and output 2

Invoking trim returns the solution. Your results might differ because of roundoff error.
[x,u,y,dx] = trim('lmod',x,u,y,ix,iu,iy) x = 0.0000 1.0000 1.0000 u = 2 y = 1.0000

11-7

11

Analyzing Simulation Results

1.0000 dx = 1.0e 015 * -0.2220 -0.0227 0.3331

Note that there might be no solution to equilibrium point problems. If that is the case, trim returns a solution that minimizes the maximum deviation from the desired result after first trying to set the derivatives to zero. For a description of the trim syntax, see trim in the Simulink online Help.

11-8

12
Creating Masked Subsystems
This section explains how to create custom user interfaces (masks) for Simulink subsystems. About Masks (p. 12-2) Masked Subsystem Example (p. 12-5) Masking a Subsystem (p. 12-10) The Mask Editor (p. 12-12) Linking Mask Parameters to Block Parameters (p. 12-28) Creating Dynamic Dialogs for Masked Blocks (p. 12-29) An overview of masked subsystems that introduces you to key concepts. Introduces you to masking by taking you step by step through the creation of a simple masked subsystem. General procedure for masking subsystems. Detailed description of the Mask Editor. How to link a mask’s parameters to the parameters of blocks behind the mask. How to create a mask that changes its appearance based on the options that a user selects.

12

Creating Masked Subsystems

About Masks
A mask is a custom user interface for a subsystem that hides the subsystem’s contents, making it appear to the user as an atomic block with its own icon and parameter dialog box. The Simulink Mask Editor enables you to create a mask for any subsystem. Masking a subsystem allows you to • Replace the parameter dialogs of a subsystem and its contents with a single parameter dialog with its own block description, parameter prompts, and help text • Replace a subsystem’s standard icon with a custom icon that depicts its purpose • Prevent unintended modification of subsystems by hiding their contents behind a mask • Create a custom block by encapsulating a block diagram that defines the block’s behavior in a masked subsystem and then placing the masked subsystem in a library

Mask Features
Masks can include any of the following features.

Mask Icon
The mask icon replaces a subsystem’s standard icon, i.e., it appears in a block diagram in place of the standard icon for a subsystem block. Simulink uses MATLAB code that you supply to draw the custom icon. You can use any MATLAB drawing command in the icon code. This gives you great flexibility in designing an icon for a masked subsystem.

Mask Parameters
Simulink allows you to define a set of user-settable parameters for a masked subsystem. Simulink stores the value of a parameter in the mask workspace (see “Mask Workspace” on page 12-3) as the value of a variable whose name you specify. These associated variables allow you to link mask parameters to specific parameters of blocks inside a masked subsystem (internal parameters) such that setting a mask parameter sets the associated block parameter (see “Linking Mask Parameters to Block Parameters” on page 12-28).

12-2

About Masks

Mask Parameter Dialog Box
The mask parameter dialog box contains controls that enable a user to set the values of the masks parameters and hence the values of any internal parameters linked to the mask parameters. The mask parameter dialog box replaces the subsystem’s standard parameter dialog box, i.e., clicking on the masked subsystem’s icon causes the mask dialog box to appear instead of the standard parameter dialog box for a Subsystem block. You can customize every feature of the mask dialog box, including which parameters appear on the dialog box, the order in which they appear, parameter prompts, the controls used to edit the parameters, and the parameter callbacks (code used to process parameter values entered by the user).

Mask Initialization Code
The initialization code is MATLAB code that you specify and that Simulink runs to initialize the masked subsystem at the start of a simulation run. You can use the initialization code to set the initial values of the masked subsystem’s mask parameters.

Mask Workspace
Simulink associates a MATLAB workspace with each masked subsystem that you create. Simulink stores the current values of the subsystem’s parameters in the workspace as well as any variables created by the block’s initialization code and parameter callbacks. You can use model and mask workspace variables to initialize a masked subsystem and to set the values of blocks inside the masked subsystem, subject to the following rules. • A block parameter expression can refer only to variables defined in the subsystem or nested subsystems that contain the block or in the model’s workspace. • A valid reference to a variable defined on more than one level in the model hierarchy resolves to the most local definition. For example, suppose that model M contains masked subsystem A, which contains masked subsystem B. Further suppose that B refers to a variable x that exists in both A’s and M’s workspaces. In this case, the reference resolves to the value in A’s workspace.

12-3

12

Creating Masked Subsystems

• A masked subsystem’s initialization code can refer only to variables in its local workspace.

Creating Masks
See “Masking a Subsystem” on page 12-10 for an overview of the process of creating a masked subsystem. See “Masked Subsystem Example” on page 12-5 for an example of the process.

12-4

Masked Subsystem Example

Masked Subsystem Example
This simple subsystem models the equation for a line, y = mx + b.

Ordinarily, when you double-click a Subsystem block, the Subsystem block opens, displaying its blocks in a separate window. The mx + b subsystem contains a Gain block, named Slope, whose Gain parameter is specified as m, and a Constant block, named Intercept, whose Constant value parameter is specified as b. These parameters represent the slope and intercept of a line. This example creates a custom dialog box and icon for the subsystem. One dialog box contains prompts for both the slope and the intercept. After you create the mask, double-click the Subsystem block to open the mask dialog box. The mask dialog box and icon look like this:
Mask dialog box

Block icon

A user enters values for Slope and Intercept in the mask dialog box. Simulink makes these values available to all the blocks in the underlying subsystem. Masking this subsystem creates a self-contained functional unit with its own application-specific parameters, Slope and Intercept. The mask maps these mask parameters to the generic parameters of the underlying blocks. The

12-5

12

Creating Masked Subsystems

complexity of the subsystem is encapsulated by a new interface that has the look and feel of a built-in Simulink block. To create a mask for this subsystem, you need to • Specify the prompts for the mask dialog box parameters. In this example, the mask dialog box has prompts for the slope and intercept. • Specify the variable name used to store the value of each parameter. • Enter the documentation of the block, consisting of the block description and the block help text. • Specify the drawing command that creates the block icon. • Specify the commands that provide the variables needed by the drawing command (there are none in this example).

Creating Mask Dialog Box Prompts
To create the mask for this subsystem, select the Subsystem block and choose Mask Subsystem from the Edit menu. This example primarily uses the Mask Editor’s Parameters pane to create the masked subsystem’s dialog box.

12-6

Masked Subsystem Example

The Mask Editor enables you to specify these attributes of a mask parameter: • Prompt, the text label that describes the parameter • Control type, the style of user interface control that determines how parameter values are entered or selected • Variable, the name of the variable that stores the parameter value Generally, it is convenient to refer to masked parameters by their prompts. In this example, the parameter associated with slope is referred to as the Slope parameter, and the parameter associated with intercept is referred to as the Intercept parameter. The slope and intercept are defined as edit controls. This means that the user types values into edit fields in the mask dialog box. These values are stored in variables in the mask workspace. Masked blocks can access variables only in the mask workspace. In this example, the value entered for the slope is assigned to the variable m. The Slope block in the masked subsystem gets the value for the slope parameter from the mask workspace. This figure shows how the slope parameter definitions in the Mask Editor map to the actual mask dialog box parameters.

After you create the mask parameters for slope and intercept, click the OK button. Then double-click the Subsystem block to open the newly constructed dialog box. Enter 3 for the Slope and 2 for the Intercept parameter.

12-7

12

Creating Masked Subsystems

Creating the Block Description and Help Text
The mask type, block description, and help text are defined on the Documentation pane. For this sample masked block, the pane looks like this.

Creating the Block Icon
So far, we have created a customized dialog box for the mx + b subsystem. However, the Subsystem block still displays the generic Simulink subsystem icon. An appropriate icon for this masked block is a plot that indicates the slope of the line. For a slope of 3, that icon looks like this.

12-8

Masked Subsystem Example

The block icon is defined on the Icon pane. For this block, the Icon pane looks like this.

Drawing commands

Icon properties

The drawing command plots a line from (0,0) to (1,m). If the slope is negative, Simulink shifts the line up by 1 to keep it within the visible drawing area of the block. The drawing commands have access to all the variables in the mask workspace. As you enter different values of slope, the icon updates the slope of the plotted line. Select Normalized as the Drawing coordinates parameter, located at the bottom of the list of icon properties, to specify that the icon be drawn in a frame whose bottom left corner is (0,0) and whose top right corner is (1,1). See “The Icon Pane” on page 12-14 for more information.

12-9

12

Creating Masked Subsystems

Masking a Subsystem
To mask a subsystem,
1 Select the subsystem. 2 Select Edit mask from the Edit menu of the model window or from the

block’s context menu. (Right-click the subsystem block to display its context menu.) The Mask Editor appears.

See “The Mask Editor” on page 12-12 for a detailed description of the Mask Editor.
3 Use the Mask Editor’s tabbed panes to perform any of the following tasks.

- Create a custom icon for the masked subsystem (see “The Icon Pane” on page 12-14) - Create parameters that allow a user to set subsystem options (see “The Mask Editor” on page 12-12)

12-10

Masking a Subsystem

- Initialize the masked subsystem’s parameters - Create online user documentation for the subsystem
4 Click Apply to apply the mask to the subsystem or OK to apply the mask

and dismiss the Mask Editor.

12-11

12

Creating Masked Subsystems

The Mask Editor
The Mask Editor allows you to create or edit a subsystem’s mask. To open the Mask Editor, select the subsystem’s block icon and then select Edit Mask from the Edit menu of the model window containing the subsystem’s block. The Mask Editor appears.

The Mask Editor contains a set of tabbed panes, each of which enables you to define a feature of the mask: • The Icon pane enables you to define the block icon (see “The Icon Pane” on page 12-14). • The Parameters pane enables you to define and describe mask dialog box parameter prompts and name the variables associated with the parameters (see “The Parameters Pane” on page 12-17). • The Initialization pane enables you to specify initialization commands (see “The Initialization Pane” on page 12-23). • The Documentation pane enables you to define the mask type and specify the block description and the block help (see “The Documentation Pane” on page 12-25).

12-12

The Mask Editor

Five buttons appear along the bottom of the Mask Editor: • The Unmask button deactivates the mask and closes the Mask Editor. The mask information is retained so that the mask can be reactivated. To reactivate the mask, select the block and choose Create Mask. The Mask Editor opens, displaying the previous settings. The inactive mask information is discarded when the model is closed and cannot be recovered. • The OK button applies the mask settings on all panes and closes the Mask Editor. • The Cancel button closes the Mask Editor without applying any changes made since you last clicked the Apply button. • The Help button displays the contents of this chapter. • The Apply button creates or changes the mask using the information that appears on all masking panes. The Mask Editor remains open. To see the system under the mask without unmasking it, select the Subsystem block, then choose Look Under Mask from the Edit menu. This command opens the subsystem. The block’s mask is not affected.

12-13

12

Creating Masked Subsystems

The Icon Pane
The Mask Editor’s Icon pane enables you to create icons that can contain descriptive text, state equations, images, and graphics.

Commands that draw the block icon Parameters that control the icon appearance

Examples of drawing commands you can use to draw the block icon

The Icon pane contains the following controls.

Drawing commands
This field allows you to enter commands that draw the block’s icon. Simulink provides a set of commands that can display text, one or more plots, or show a transfer function (see “Mask Icon Drawing Commands”) in the online Simulink reference). You must use these commands to draw your icon. Simulink executes the drawing commands in the order in which they appear in this field. Drawing commands have access to all variables in the mask workspace. This example demonstrates how to create an improved icon for the mx + b sample masked subsystem discussed earlier in this chapter.
pos = get_param(gcb, 'Position'); width = pos(3) – pos(1); height = pos(4) – pos(2); x = [0, width]; if (m >= 0), y = [0, (m*width)]; end

12-14

The Mask Editor

if (m < 0),

y = [height, (height + (m*width))]; end

These initialization commands define the data that enables the drawing command to produce an accurate icon regardless of the shape of the block. The drawing command that generates this icon is plot(x,y).

Examples of drawing commands
This panel illustrates the usage of the various icon drawing commands supported by Simulink. To determine the syntax of a command, select the command from the Command list. Simulink displays an example of the selected command at the bottom of the panel and the icon produced by the command to the right of the list.

Icon options
These controls allow you to specify the following attributes of the block icon.
Frame. The icon frame is the rectangle that encloses the block. You can choose to show or hide the frame by setting the Frame parameter to Visible or Invisible. The default is to make the icon frame visible. For example, this

figure shows visible and invisible icon frames for an AND gate block.

Visible

Invisible

Transparency. The icon can be set to Opaque or Transparent, either hiding or showing what is underneath the icon. Opaque, the default, covers information Simulink draws, such as port labels. This figure shows opaque and transparent icons for an AND gate block. Notice the text on the transparent icon.

Opaque

Transparent

Rotation. When the block is rotated or flipped, you can choose whether to rotate or flip the icon or to have it remain fixed in its original orientation. The default is not to rotate the icon. The icon rotation is consistent with block port rotation. This figure shows the results of choosing Fixed and Rotates icon rotation when the AND gate block is rotated.

12-15

12

Creating Masked Subsystems

Fixed

Rotates

Units. This option controls the coordinate system used by the drawing commands. It applies only to plot and text drawing commands. You can select from among these choices: Autoscale, Normalized, and Pixel.
m ax(,m ax(X) Y) 1, 1 bl w i h,bl hei ock dt ock ght

m i X) m i Y) n(, n(

0, 0

0, 0

Aut oscal e

N or alzed m i

Pi xel

• Autoscale scales the icon to fit the block frame. When the block is resized, the icon is also resized. For example, this figure shows the icon drawn using these vectors:
X = [0 2 3 4 9]; Y = [4 6 3 5 8];

The lower left corner of the block frame is (0,3) and the upper right corner is (9,8). The range of the x-axis is 9 (from 0 to 9), while the range of the y-axis is 5 (from 3 to 8). • Normalized draws the icon within a block frame whose bottom left corner is (0,0) and whose top right corner is (1,1). Only X and Y values between 0 and 1 appear. When the block is resized, the icon is also resized. For example, this figure shows the icon drawn using these vectors:
X = [.0 .2 .3 .4 .9]; Y = [.4 .6 .3 .5 .8];

12-16

The Mask Editor

• Pixel draws the icon with X and Y values expressed in pixels. The icon is not automatically resized when the block is resized. To force the icon to resize with the block, define the drawing commands in terms of the block size.

The Parameters Pane
The Parameters pane allows you to create and modify masked subsystem parameters (mask parameters, for short) that determine the behavior of the masked subsystem.

The Parameters pane contains the following elements: • The Dialog parameters panel allows you to select and change the major properties of the mask’s parameters (see “Dialog Parameters Panel” on page 12-18). • The Options for selected parameter panel allows you to set additional options for the parameter selected in the Dialog parameters panel. • The buttons on the left side of the Parameters pane allow you to add, delete, and change the order of appearance of parameters on the mask’s parameter dialog box (see “Dialog Parameters Panel” on page 12-18).

12-17

12

Creating Masked Subsystems

Dialog Parameters Panel
Lists the mask’s parameters in tabular form. Each row displays the major attributes of one of the mask’s parameters.
Prompt. Text that identifies the parameter on a masked subsystem’s dialog box.

Variable. Name of the variable that stores the parameter’s value in the mask’s workspace (see “Mask Workspace” on page 12-3). You can use this variable as the value of parameters of blocks inside the masked subsystem, thereby allowing the user to set the parameters via the mask dialog box.

Note Simulink does not distinguish between uppercase and lowercase letters in mask variable names. For example, Simulink treats gain, GAIN, and Gain as the same name.

Type. Type of control used to edit the value of this parameter. The control

appears on the mask’s parameter dialog box following the parameter prompt. The button that follows the type name in the Parameters pane pops up a list of the controls supported by Simulink (see “Control Types” on page 12-20). To change the current control type, select another type from the list.
Evaluate. If checked, this option causes Simulink to evaluates the expression

entered by the user before it is assigned to the variable. Otherwise Simulink treats the expression itself as a string value and assigns it to the variable. For example, if the user enters the expression gain in an edit field and the Evaluate option is checked, Simulink evaluates gain and assigns the result to the variable. Otherwise, Simulink assigns the string 'gain' to the variable.

12-18

The Mask Editor

See “Check Box Control” on page 12-21 and “Pop-Up Control” on page 12-22 for information on how this option affects evaluation of the parameters. If you need both the string entered and the evaluated value, uncheck the Evaluate option. Then use the MATLAB eval command in the initialization commands. For example, if LitVal is the string 'gain', then to obtain the evaluated value, use the command
value = eval(LitVal) Tunable. Selecting this option allows a user to change the value of the mask parameter while a simulation is running.

Note Simulink ignores this setting if the block being masked is a source block, i.e., the block has outputs but no input ports. In such a case, even if this option is selected, you cannot tune the parameter while a simulation is running. See “Changing Source Block Parameters” on page 5-9 for more information.

Options for Selected Parameter Panel
This panel allows you to set additional options for the parameter selected in the Dialog parameters table.
Show parameter. The selected parameter appears on the masked block’s parameter dialog box only if this option is checked (the default). Enable parameter. Unchecking this option grays the selected parameter’s prompt and disables its edit control. This means that the user cannot set the value of the parameter. Popups. This field is enabled only if the edit control for the selected parameter

is a pop-up. Enter the values of the pop-up control in this field, each on a separate line.
Callback. Enter MATLAB code that you want Simulink to execute when a user edits the selected parameter. The callback can create and reference variables only in the block’s base workspace. If the callback needs the value of a mask parameter, it can use get_param to obtain the value, e.g.,

12-19

12

Creating Masked Subsystems

if str2num(get_param(gcb, 'g'))<0 error('Gain is negative.') end

Parameter Buttons
The following sections explain the purpose of the buttons that appear on the Parameters pane in the order of their appearance from the top of the pane.
Add Button. Adds a parameter to the mask’s parameter list. The newly created

parameter appears in the adjacent Dialog parameters table.

Add

New parameter

Delete Button. Deletes the parameter currently selected in the Dialog

parameters table.
Up Button. Moves the currently selected parameter up one row in the Dialog

parameters table. Dialog parameters appear in the mask’s parameter dialog box (see “Mask Parameter Dialog Box” on page 12-3) in the same order in which they appear in the Dialog parameters table. This button (and the next) thus allows you to determine the order in which parameters appear on the dialog box.
Down Button. Moves the currently selected parameter down one row in the

Dialog parameters table and hence down one position on the mask’s

parameter dialog box.

Control Types
Simulink enables you to choose how parameter values are entered or selected. You can create three styles of controls: edit fields, check boxes, and pop-up controls. For example, this figure shows the parameter area of a mask dialog box that uses all three styles of controls (with the pop-up control open).

12-20

The Mask Editor

Edit control Check box control Pop-up control

Edit Control
An edit field enables the user to enter a parameter value by typing it into a field. This figure shows how the prompt for the sample edit control was defined.

The value of the variable associated with the parameter is determined by the
Evaluate option.
Evaluate Value

On Off

The result of evaluating the expression entered in the field The actual string entered in the field

Check Box Control
A check box enables the user to choose between two alternatives by selecting or deselecting a check box. This figure shows how the sample check box control is defined.

12-21

12

Creating Masked Subsystems

The value of the variable associated with the parameter depends on whether the Evaluate option is selected.
Control State Evaluated Value Literal Value 'on' 'off'

Checked Unchecked

1 0

Pop-Up Control
A pop-up enables the user to choose a parameter value from a list of possible values. Specify the values in the Popups field on the Parameters pane (see “Popups” on page 12-19). The following example shows a pop-up parameter.

The value of the variable associated with the parameter (Color) depends on the item selected from the pop-up list and whether the Evaluate option is checked (on).
Evaluate Value

On

Index of the value selected from the list, starting with 1. For example, if the third item is selected, the parameter value is 3. String that is the value selected. If the third item is selected, the parameter value is 'green'.

Off

12-22

The Mask Editor

Changing Default Values for Mask Parameters in a Library
To change default parameter values in a masked library block, follow these steps:
1 Unlock the library. 2 Open the block to access its dialog box, fill in the desired default values, and

close the dialog box.
3 Save the library.

When the block is copied into a model and opened, the default values appear on the block’s dialog box. For more information, see “Working with Block Libraries” on page 5-28.

The Initialization Pane
The Initialization pane allows you to enter MATLAB commands that initialize the masked subsystem.

Simulink executes the initialization commands when it • Loads the model • Starts the simulation or updates the block diagram

12-23

12

Creating Masked Subsystems

• Rotates the masked block • Redraws the block’s icon (if the mask’s icon creation code depends on variables defined in the initialization code) The Initialization pane includes the following controls.

Dialog variables
The Dialog variables list displays the names of the variables associated with the subsystem’s mask parameters, i.e., the parameters defined in the Parameters pane. You can copy the name of a parameter from this list and paste it into the adjacent Initialization commands field, using the Simulink keyboard copy and paste commands. You can also use the list to change the names of mask parameter variables. To change a name, double-click the name in the list. An edit field containing the existing name appears. Edit existing name and press Enter or click outside the edit field to confirm your changes.

Initialization commands
Enter the initialization commands in this field. You can enter any valid MATLAB expression, consisting of MATLAB functions, operators, and variables defined in the mask workspace. Initialization commands cannot access base workspace variables. Terminate initialization commands with a semicolon to avoid echoing results to the Command Window.

Allow library block to modify its contents
This check box is enabled only if the masked subsystem resides in a library. Checking this block allows the block’s initialization code to modify the contents of the masked subsystem, i.e., it lets the code add or delete blocks and set the parameters of those blocks. Otherwise, Simulink generates an error when a masked library block tries to modify its contents in any way. To set this option at the MATLAB prompt, select the self-modifying block and enter the following command.
set_param(gcb, 'MaskSelfModifiable', 'on');

Then save the block.

12-24

The Mask Editor

Debugging Initialization Commands
You can debug initialization commands in these ways: • Specify an initialization command without a terminating semicolon to echo its results to the Command Window. • Place a keyboard command in the initialization commands to stop execution and give control to the keyboard. For more information, see the help text for the keyboard command. • Enter either of these commands in the MATLAB Command Window:
dbstop if error dbstop if warning

If an error occurs in the initialization commands, execution stops and you can examine the mask workspace. For more information, see the help text for the dbstop command.

The Documentation Pane
The Documentation pane enables you to define or modify the type, description, and help text for a masked block. This figure shows how fields on

12-25

12

Creating Masked Subsystems

the Documentation pane correspond to the mx + b sample mask block’s dialog box.

Mask Type Field
The mask type is a block classification used only for purposes of documentation. It appears in the block’s dialog box and on all Mask Editor panes for the block. You can choose any name you want for the mask type. When Simulink creates the block’s dialog box, it adds “(mask)” after the mask type to differentiate masked blocks from built-in blocks.

Mask Description Field
The block description is informative text that appears in the block’s dialog box in the frame under the mask type. If you are designing a system for others to use, this is a good place to describe the block’s purpose or function. Simulink automatically wraps long lines of text. You can force line breaks by using the Enter or Return key.

12-26

The Mask Editor

Block Help Field
You can provide help text that is displayed when the Help button is clicked on the masked block’s dialog box. If you create models for others to use, this is a good place to explain how the block works and how to enter its parameters. You can include user-written documentation for a masked block’s help. You can specify any of the following for the masked block help text: • URL specification (a string starting with http:, www, file:, ftp:, or mailto:) • web command (launches a browser) • eval command (evaluates a MATLAB string) • Static text displayed in the Web browser Simulink examines the first line of the masked block help text. If it detects a URL specification, web command, or eval command, it accesses the block help as directed; otherwise, the full contents of the masked block help text are displayed in the browser. These examples illustrate several acceptable commands:
web([docroot '/My Blockset Doc/' get_param(gcb,'MaskType')... '.html']) eval('!Word My_Spec.doc') http://www.mathworks.com file:///c:/mydir/helpdoc.html www.mathworks.com

Simulink automatically wraps long lines of text.

12-27

12

Creating Masked Subsystems

Linking Mask Parameters to Block Parameters
The variables associated with mask parameters allow you to link mask parameters with block parameters. This in turn allows a user to use the mask to set the values of parameters of blocks inside the masked subsystem. To link the parameters, open the block’s parameter dialog box and enter an expression in the block parameter’s value field that uses the mask parameter. The mx + b masked subsystem, described earlier in this chapter, uses this approach to link the Slope and Intercept mask parameters to corresponding parameters of a Gain and Constant block, respectively, that reside in the subsystem. M ask W or kspace

m

b

You can use a masked block’s initialization code to link mask parameters indirectly to block parameters. In this approach, the initialization code creates variables in the mask workspace whose values are functions of the mask parameters and that appear in expressions that set the values of parameters of blocks concealed by the mask.

12-28

Creating Dynamic Dialogs for Masked Blocks

Creating Dynamic Dialogs for Masked Blocks
Simulink allows you to create dialogs for masked blocks whose appearance changes in response to user input. Features of masked dialog boxes that can change in this way include • Visibility of parameter controls Changing a parameter can cause the control for another parameter to appear or disappear. The dialog expands or shrinks when a control appears or disappears, respectively. • Enabled state of parameter controls Changing a parameter can cause the control for another parameter to be enabled or disabled for input. Simulink grays a disabled control to indicate visually that it is disabled. • Parameter values Changing a parameter can cause related parameters to be set to appropriate values. Creating a dynamic masked dialog entails using the mask editor in combination with the Simulink set_param command. Specifically, you first use the mask editor to define all the dialog’s parameters, both static and dynamic. Next you use the Simulink set_param command at the MATLAB command line to specify callback functions that define the dialog’s response to user input. Finally you save the model or library containing the masked subsystem to complete the creation of the dynamic masked dialog.

Setting Masked Block Dialog Parameters
Simulink defines a set of masked block parameters that define the current state of the masked block’s dialog. You can use the mask editor to inspect and set many of these parameters. The Simulink get_param and set_param commands also let you inspect and set mask dialog parameters. The advantage? The set_param command allows you to set parameters and hence change a dialog’s appearance while the dialog is open. This in turn allows you to create dynamic masked dialogs. For example, you can use the set_param command at the MATLAB command line to specify callback functions to be invoked when a user changes the values of user-defined parameters. The callback functions in turn can use set_param

12-29

12

Creating Masked Subsystems

commands to change the values of the masked dialog’s predefined parameters and hence its state, for example, to hide, show, enable, or disable a user-defined parameter control.

Predefined Masked Dialog Parameters
Simulink associates the following predefined parameters with masked dialogs.

MaskCallbacks
The value of this parameter is a cell array of strings that specify callback expressions for the dialog’s user-defined parameter controls. The first cell defines the callback for the first parameter’s control, the second for the second parameter control, etc. The callbacks can be any valid MATLAB expressions, including expressions that invoke M-file commands. This means that you can implement complex callbacks as M-files. The easiest way to set callbacks for a mask dialog is to first select the corresponding masked dialog in a model or library window and then to issue a set_param command at the MATLAB command line. For example, the following code
set_param(gcb,'MaskCallbacks',{'parm1_callback', '',... 'parm3_callback'});

defines callbacks for the first and third parameters of the masked dialog for the currently selected block. To save the callback settings, save the model or library containing the masked block.

MaskDescription
The value of this parameter is a string specifying the description of this block. You can change a masked block’s description dynamically by setting this parameter.

MaskEnables
The value of this parameter is a cell array of strings that define the enabled state of the user-defined parameter controls for this dialog. The first cell defines the enabled state of the control for the first parameter, the second for the second parameter, etc. A value of 'on' indicates that the corresponding control is enabled for user input; a value of 'off' indicates that the control is disabled.

12-30

Creating Dynamic Dialogs for Masked Blocks

You can enable or disable user input dynamically by setting this parameter in a callback. For example, the following command in a callback
set_param(gcb,'MaskEnables',{'on','on','off'});

would disable the third control of the currently open masked block’s dialog. Simulink colors disabled controls gray to indicate visually that they are disabled.

MaskPrompts
The value of this parameter is a cell array of strings that specify prompts for user-defined parameters. The first cell defines the prompt for the first parameter, the second for the second parameter, etc.

MaskType
The value of this parameter is the mask type of the block associated with this dialog.

MaskValues
The value of this parameter is a cell array of strings that specify the values of user-defined parameters for this dialog. The first cell defines the value for the first parameter, the second for the second parameter, etc.

MaskVisibilities
The value of this parameter is a cell array of strings that specify the visibility of the user-defined parameter controls for this dialog. The first cell defines the visibility of the control for the first parameter, the second for the second parameter, etc. A value of 'on' indicates that the corresponding control is visible; a value of 'off' indicates that the control is hidden. You can hide or show user-defined parameter controls dynamically by setting this parameter in the callback for a control. For example, the following command in a callback
set_param(gcb,'MaskVisibilities',{'on','off','on'});

would hide the control for the currently selected block’s second user-defined mask parameter. Simulink expands or shrinks a dialog to show or hide a control, respectively.

12-31

12

Creating Masked Subsystems

12-32

13
Simulink Debugger
The following sections tell you how to use the Simulink debugger to pinpoint bugs in a model. Introduction (p. 13-2) Using the Debugger’s Graphical User Interface (p. 13-3) Using the Debugger’s Command-Line Interface (p. 13-11) Getting Online Help (p. 13-12) Starting the Debugger (p. 13-13) Starting a Simulation (p. 13-14) Running a Simulation Step by Step (p. 13-15) Setting Breakpoints (p. 13-22) Displaying Information About the Simulation (p. 13-28) Displaying Information About the Model (p. 13-32) Overview of the debugger. How to use the debugger’s graphical user interface. How to debug from the MATLAB command line. How to get help on debugger commands. How to start a simulation from the debugger. How to start a simulation in debug mode. How to run a simulation step by step. How to set breakpoints at blocks and time steps. How to display information about the current simulation. How to display information about the model being debugged.

13

Simulink Debugger

Introduction
The Simulink debugger allows you to run a simulation method by method, stopping the simulation after each method, to examine the results of executing that method. This allows you to pinpoint problems in your model to specific blocks, parameters, or interconnections.

Note Methods are functions that Simulink uses to solve a model at each time step during the simulation. Blocks are made up of multiple methods. “Block execution” in this documentation is shorthand notation for “block methods execution.” Block diagram execution is a multi-step operation that requires execution of the different block methods in all the blocks in a diagram at various points during the process of solving a model at each time step during simulation, as specified by the simulation loop.

The Simulink debugger has both a graphical and a command-line user interface. The graphical interface allows you to access the debugger’s most commonly used features. The command-line interface gives you access to all the debugger’s capabilities. If both interfaces enable you to perform a task, the documentation shows you first how to use the graphical interface, then the command-line interface, to perform the task.

13-2

Using the Debugger’s Graphical User Interface

Using the Debugger’s Graphical User Interface
Select Debug from a model window’s Tools menu to display the Simulink debugger’s graphical interface.

The following topics describe the major components of the debugger’s graphical user interface: • “Toolbar” on page 13-4 • “Breakpoints Pane” on page 13–6 • “Simulation Loop pane” on page 13–7 • “Outputs Pane” on page 13–8 • “Sorted List Pane” on page 13–9 • “Status Pane” on page 13–10

13-3

13

Simulink Debugger

Toolbar
The debugger toolbar appears at the top of the debugger window.
Toolboar

From left to right, the toolbar contains the following command buttons:
Button Purpose

Step into next method (see “Stepping Commands” on page 13-17 for more information on this and the following stepping commands). Step over next method. Step out of current method. Step to first method at start of next time step. Step to next block method.

13-4

Using the Debugger’s Graphical User Interface

Button

Purpose

Start or continue the simulation. Pause the simulation. Stop the simulation. Break before the selected block. Display inputs and outputs of the selected block when executed. Display current inputs and outputs of selected block. Toggle animation mode on or off (see “Animation Mode” on page 13-18). The slider next to this button controls the animation rate. Display help for the debugger. Close the debugger.

13-5

13

Simulink Debugger

Breakpoints Pane
To display the Breakpoints pane, select the Break Points tab on the debugger window.
Breakpoints pane

The Breakpoints pane allows you to specify block methods or conditions at which to stop a simulation. See “Setting Breakpoints” on page 13–22 for more information.

Note The debugger grays out and disables the Breakpoints pane when its animation mode is selected (see “Animation Mode” on page 13-18). This prevents you from setting breakpoints and indicates that animation mode ignores existing breakpoints.

13-6

Using the Debugger’s Graphical User Interface

Simulation Loop pane
To display the Simulation Loop pane, select the Simulation Loop tab on the debugger window.
Simulation Loop pane

The Simulation Loop pane contains three columns: • Method • Breakpoints • ID

Method Column
The Method column lists the methods that have been called thus far in the simulation as a method tree with expandable/collapsable nodes. Each node of the tree represents a method that calls other methods. Expanding a node shows the methods that the node method calls. Block method names are hyperlinks. Clicking a block method name highlights the corresponding block in the model diagram. Block method names are underlined to indicate that they are hyperlinks. Whenever the simulation stops, the debugger highlights the name of the method where the simulation has stopped as well as the methods that directly or indirectly invoked it. The highlighted method names visually indicate the current state of the simulator’s method call stack.

13-7

13

Simulink Debugger

Breakpoints Column
The breakpoints column consists of check boxes. Selecting a check box sets a breakpoint at the method whose name appears to the left of the check box. See “Setting Breakpoints from the Simulation Loop Pane” on page 13-24 for more information.

Note The debugger grays out and disables this column when its animation mode is selected (see “Animation Mode” on page 13-18). This prevents you from setting breakpoints and indicates that animation mode ignores existing breakpoints.

ID Column
The ID column lists the IDs of the methods listed in the Methods column. See “Method ID” on page 13–11 for more information.

Outputs Pane
To display the Outputs pane, select the Outputs tab on the debugger window.
Outputs pane

The Outputs pane displays the same debugger output that would appear in the MATLAB Command Window, if the debugger were running in command-line mode. The output includes the debugger command prompt and the inputs,

13-8

Using the Debugger’s Graphical User Interface

outputs, and states of the block at whose method the simulation is currently paused (see “Block Data Output” on page 13-16). The command prompt displays current simulation time and the name and index of the method in which the debugger is currently stopped (see “Block ID” on page 13-11) .

Sorted List Pane
To display the Sorted List pane, select the Sorted List tab on the debugger window.
Sorted List pane

The Sorted List pane displays the sorted lists for the model being debugged. See “Displaying a Model’s Sorted Lists” on page 13-32 for more information.

13-9

13

Simulink Debugger

Status Pane
To display the Status pane, select the Status tab on the debugger window.
Status pane

The Status pane displays the values of various debugger options and other status information.

13-10

Using the Debugger’s Command-Line Interface

Using the Debugger’s Command-Line Interface
In command line mode, you control the debugger by entering commands at the debugger command line in the MATLAB Command Window. The debugger accepts abbreviations for debugger commands. See the Simulink Reference for a list of command abbreviations and repeatable commands. You can repeat some commands by entering an empty command (i.e., by pressing the Return key) at the MATLAB command line.

Method ID
Some Simulink commands and messages use method IDs to refer to methods. A method ID is an integer assigned to a method the first time it is invoked in a simulation. The debugger assigns method indexes sequentially, starting with 0 for the first method invoked in a debugger session.

Block ID
Some Simulink debugger commands and messages use block IDs to refer to blocks. Simulink assigns block IDs to blocks while generating the model’s sorted lists during the compilation phase of the simulation. A block ID has the form sid:bid where sid is an integer identifying the system that contains the block (either the root system or a nonvirtual subsystem) and bid is the position of the block in the system’s sorted list. For example, the block index 0:1 refers to the first block in the model’s root system. The slist command shows the block ID for each block in the model being debugged.

Accessing the MATLAB Workspace
You can enter any MATLAB expression at the sldebug prompt. For example, suppose you are at a breakpoint and you are logging time and output of your model as tout and yout. Then the following command
(sldebug ...) plot(tout, yout)

creates a plot. You cannot display the value of a workspace variable whose name is partially or entirely the same as that of a debugger command by entering it at the debugger command prompt. You can, however, use the MATLAB eval command to work around this problem. For example, use eval('s') to determine the value of s rather then s(tep) the simulation.

13-11

13

Simulink Debugger

Getting Online Help
You can get online help on using the debugger by clicking the Help button on the debugger’s toolbar or by pressing the F1 key when the text cursor is in a debugger panel or text field. Clicking the Help button displays help for the debugger in the MATLAB Help browser.
Help button

Pressing the F1 key displays help for the debugger panel or text field that currently has the keyboard input focus. In command-line mode, you can get a brief description of the debugger commands by typing help at the debug prompt.

13-12

Starting the Debugger

Starting the Debugger
You can start the debugger either from a model window or from the MATLAB Command Line. To start the debugger from a model window, select Debugger from the model window’s Tools menu. The debugger’s graphical user interface appears (see “Using the Debugger’s Graphical User Interface” on page 13–3). To start the debugger from the MATLAB Command Window, enter either the
sldebug command or a sim command. For example, either the command sim('vdp',[0,10],simset('debug','on'))

or the command
sldebug 'vdp'

loads the Simulink demo model vdp into memory, starts the simulation, and stops the simulation at the first block in the model’s execution list.

Note When running the debugger in graphical user interface (GUI) mode, you must explicitly start the simulation. See “Starting the Debugger” on page 13-13 for more information.

13-13

13

Simulink Debugger

Starting a Simulation
To start the simulation, select the Start/Continue button on the debugger’s toolbar.
Start/Continue button

The simulation starts and stops at the first simulation method to be executed. It displays the name of the method in its Simulation Loop pane and in the current method annotation on the Simulink block diagram. At this point, you can set breakpoints, run the simulation step by step, continue the simulation to the next breakpoint or end, examine data, or perform other debugging tasks. The following sections explain how to use the debugger’s graphical controls to perform these debugging tasks.

Note When you start the debugger in GUI mode, the debugger’s command-line interface is also active in the MATLAB Command Window. However, you should avoid using the command-line interface, to prevent synchronization errors between the graphical and command-line interfaces.

13-14

Running a Simulation Step by Step

Running a Simulation Step by Step
The Simulink debugger provides various commands that let you advance a simulation from the method where it is currently suspended (the next method) by various increments (see “Stepping Commands” on page 13-17). For example, you can advance the simulation into or over the next method, or out of the current method, or to the top of the simulation loop. After each advance, the debugger displays information that enables you to determine the point to which the simulation has advanced and the results of advancing the simulation to that point. For example, in GUI mode, after each step command, the debugger highlights the current method call stack in the Simulation Loop pane. The call stack comprises the next method and the methods that invoked the next method either directly or indirectly. The debugger highlights the call stack by highlighting the names of the methods that make up the call stack in the Simulation Loop pane.

Next method

In command-line mode, you can use the where command to display the method call stack. If the next method is a block method, the debugger points the debug pointer at the block corresponding to the method (see “Debug Pointer” on page 13-20 for more information). If the block of the next method to be executed resides in a subsystem, the debugger opens the subsystem and points to the block in the subsystem’s block diagram.

13-15

13

Simulink Debugger

Block Data Output
After executing a block method, the debugger prints any or all of the following block data in the debugger Output panel (in GUI mode) or in the MATLAB Command Window (in command-line mode): • Un = v where v is the current value of the block’s nth input. • Yn = v where v is the current value of the block’s nth output. • CSTATE = v where v is the value of the block’s continuous state vector. • DSTATE = v where v is the value of the blocks discrete state vector. The debugger also displays the current time, the ID and name of the next method to be executed, and the name of the block to which the method applies in the MATLAB Command Window. The following example illustrates typical debugger outputs after a step command.
Current time Next method

%---% [Tm = 2.009509145207664e-005] 0:2 Integrator.Outputs 'vdp/x2' (sldebug @44): Data of 0:2 Integrator block 'vdp/x2': U1 = [-2] Y1 = [-4.0190182904153282e-005] CSTATE = [-4.0190182904153282e-005] %---% [Tm = 2.009509145207664e-005] 0:3 Outport.Outputs 'vdp/Out2'

13-16

Running a Simulation Step by Step

Stepping Commands
Command-line mode provides the following commands for advancing a simulation incrementally:
Command step [in into] Advances the simulation ...

Into the next method, stopping at the first method in the next method or, if the next method does not contain any methods, at the end of the next method To the method that follows the next method, executing all methods invoked directly or indirectly by the next method To the end of the current method, executing any remaining methods invoked by the current method To the first method of the next time step (i.e., the top of the simulation loop) To the next block method to be executed, executing all intervening model- and system-level methods Same as step over

step over

step out

step top

step blockmth

next

Buttons in the debugger toolbar allow you to access these commands in GUI mode
Next Block Step Out Method

Step

Step Over Step Top

Selecting a button has the same effect as entering the corresponding command at the debugger command line.

13-17

13

Simulink Debugger

Continuing a Simulation
In GUI mode, the Stop button turns red when the debugger suspends the simulation for any reason. To continue the simulation, click the Start/Continue button. In command-line mode, enter continue to continue the simulation. By default, the debugger runs the simulation to the next breakpoint (see “Setting Breakpoints” on page 13-22) or to the end of the simulation, whichever comes first.

Animation Mode
In animation mode, the Start/Continue button or the continue command advances the simulation method by method, pausing after each method, to the first method of the next major time step. While running the simulation in animation mode, the debugger uses its debug pointer (see “Debug Pointer” on page 13-20) to indicate on the block diagram which block method is being executed at each step. The moving pointer providing a visual indication of the progress of the simulation.

Note When animation mode is enabled, the debugger does not allow you to set breakpoints and ignores any breakpoints that you set when animating the simulation.

To enable animation when running the debugger in GUI mode, select the Animation Mode toggle button on the debugger’s toolbar.
Animation Mode

Animation Rate

The slider on the debugger toolbar allows you to increase or decrease the delay between method invocations and hence to slow down or speed up the animation rate. To disable animation mode when running the debugger in GUI mode, toggle the Animation Mode button on the toolbar.

13-18

Running a Simulation Step by Step

To enable animation when running the debugger in command-line mode, enter the animate command at the MATLAB command line. The animate command’s optional delay parameter allows you to specify the length of the pause between method invocations (1 second by default) and thereby accelerate or slow down the animation. For example, the command
animate 0.5

causes the animation to run at twice its default rate. To disable animation mode when running the debugger in command-line mode, enter
animate stop

at the MATLAB command line.

Running a Simulation Nonstop
The run command lets you run a simulation to the end of the simulation, skipping any intervening breakpoints. At the end of the simulation, the debugger returns you to the MATLAB command line. To continue debugging a model, you must restart the debugger.

Note The GUI mode does not provide a graphical version of the run command. To run the simulation to the end, you must first clear all breakpoints and then click the Start/Continue button.

13-19

13

Simulink Debugger

Debug Pointer
Whenever the debugger stops the simulation at a method, it displays a debug pointer on the block diagram of the model being debugged

Block pointer

Next method box

Method tile

The debug pointer is an annotation that indicates the next method to be executed when simulation resumes. It consists of the following elements: • Next method box • Block pointer • Method tile

Next Method Box
The next method box appears in the upper left corner of the block diagram. It specifies the name and ID of the next method to be executed.

Block Pointer
The block pointer appears when the next method is a block method. It indicates the block on which the next method operates.

Method Tile
The method tile is a rectangular patch of color that appears when the next method is a block method. The tile overlays a portion of the icon of the block on

13-20

Running a Simulation Step by Step

which the next method executes. The color and position of the tile on the icon indicate the type of the next block method as follows.

Update (red)

Outputs Major Time Step (dark green)

Derivatives (orange)

Outputs Minor Time Step (green)

Zero Crossings (light blue)

Start (magenta) Initialize (blue) etc.

In animation mode, the tiles persist for the length of the current major time step and a number appears in each tile. The number specifies the number of times that the corresponding method has been invoked for the block thus far in the time step.

13-21

13

Simulink Debugger

Setting Breakpoints
The Simulink debugger allows you to define stopping points in a simulation called breakpoints. You can then run a simulation from breakpoint to breakpoint, using the debugger’s continue command. The debugger lets you define two types of breakpoints: unconditional and conditional. An unconditional breakpoint occurs whenever a simulation reaches a method that you specified previously. A conditional breakpoint occurs when a condition that you specified in advance arises in the simulation. Breakpoints are useful when you know that a problem occurs at a certain point in your program or when a certain condition occurs. By defining an appropriate breakpoint and running the simulation via the continue command, you can skip immediately to the point in the simulation where the problem occurs.

Setting Unconditional Breakpoints
You can set unconditional breakpoints from the • Debugger toolbar • Simulation Loop pane • MATLAB Command Window (command-line mode only)

Setting Breakpoints from the Debugger Toolbar
To set a breakpoint on a block’s methods, select the block and then select the Breakpoint button on the debugger toolbar.
Breakpoint

13-22

Setting Breakpoints

The debugger displays the name of the selected block in the Break/Display
points panel of its Breakpoints pane.

Note Selecting the Breakpoint button on the toolbar sets breakpoints on the invocations of a block’s methods in major time steps. To enable breakpoints in minor time steps, you must select the debugger’s Minor time steps option (see “Breaking in Minor Time Steps” on page 13-27).

You can temporarily disable the breakpoints on a block by deselecting the check box in the breakpoints column of the panel. To clear the breakpoints on a block and remove its entry from the panel, select the entry and then select the Remove selected point button on the panel.

Note You cannot set a breakpoint on a virtual block. A virtual block is a block whose function is purely graphical: it indicates a grouping or relationship among a model’s computational blocks. The debugger warns you if you attempt to set a breakpoint on a virtual block. You can obtain a listing of a model’s nonvirtual blocks,using the slist command (see “Displaying a Model’s Nonvirtual Blocks” on page 13-33).

13-23

13

Simulink Debugger

Setting Breakpoints from the Simulation Loop Pane
To set a breakpoint at a particular invocation of a method displayed in the Simulation Loop pane, select the check box next to the method’s name in the breakpoint column of the pane.

Breakpoint

To clear the breakpoint, deselect the check box.

Setting Breakpoints from the MATLAB Command Window
In command-line mode, use the break and bafter commands to set breakpoints before or after a specified method, respectively. Use the clear command to clear breakpoints.

Setting Conditional Breakpoints
You can use either the Break on conditions panel of the debugger’s Breakpoints pane

13-24

Setting Breakpoints

or the following commands (in command-line mode) to set conditional breakpoints.
Command tbreak [t] minor nanbreak Causes Simulation to Stop

At a simulation time step At methods invoked in minor time steps At the occurrence of an underflow or overflow (NaN) or infinite (Inf) value When the simulation reaches the state that determines the simulation step size When a zero crossing occurs between simulation time steps

xbreak

zcbreak

Setting Breakpoints at Time Steps
To set a breakpoint at a time step, enter a time in the debugger’s Break at time field (GUI mode) or enter the time using the tbreak command. This causes the debugger to stop the simulation at the Outputs.Major method of the model at the first time step that follows the specified time. For example, starting vdp in debug mode and entering the commands
tbreak 2 continue

causes the debugger to halt the simulation at the vdp.Outputs.Major method of time step 2.078 as indicated by the output of the continue command.
%--% [TM = 2.078784598291364] vdp.Outputs.Major (sldebug @18):

Breaking on Nonfinite Values
Selecting the debugger’s NaN values option or entering the nanbreak command causes the simulation to stop when a computed value is infinite or outside the range of values that can be represented by the machine running the

13-25

13

Simulink Debugger

simulation. This option is useful for pinpointing computational errors in a Simulink model.

Breaking on Step-Size Limiting Steps
Selecting the Step size limited by state option or entering the xbreak command causes the debugger to stop the simulation when the model uses a variable-step solver and the solver encounters a state that limits the size of the steps that it can take. This command is useful in debugging models that appear to require an excessive number of simulation time steps to solve.

Breaking at Zero Crossings
Selecting the Zero crossings option or entering the zcbreak command causes the simulation to halt when Simulink detects a nonsampled zero crossing in a model that includes blocks where zero crossings can arise. After halting, Simulink displays the location in the model, the time, and the type (rising or falling) of the zero crossing. For example, setting a zero-crossing break at the start of execution of the zeroxing demo model,
sldebug zeroxing %--% [TM = 0] zeroxing.Simulate (sldebug @0): zcbreak Break at zero crossing events : enabled

and continuing the simulation
(sldebug @0): continue

results in a rising zero-crossing break at
[Tz = 0.2] [Hz = 0] Detected 2 Zero Crossing Events 0:5:1R, 0:5:2R %--% [Tm = 0.4] zeroxing.ZeroCrossingDetectionLoop (sldebug @45):

If a model does not include blocks capable of producing nonsampled zero crossings, the command prints a message advising you of this fact.

13-26

Setting Breakpoints

Breaking in Minor Time Steps
To break at invocations of a block’s methods in minor time steps, select the Minor time steps option on the debugger’s Break on conditions panel or enter minor at the debugger command prompt.

Note For this option to take effect, you must previously or subsequently set breakpoints on all the block’s methods, using either the Breakpoint button on the debugger’s toolbar or the break gcb or bafter gcb command. This option has no effect on breakpoints set on specific invocations of a block’s methods set in either the Simulation Loop pane or via the break/bafter m:id commands.

13-27

13

Simulink Debugger

Displaying Information About the Simulation
The Simulink debugger provides a set of commands that allow you to display block states, block inputs and outputs, and other information while running a model.

Displaying Block I/O
The debugger allows you to display block I/O by selecting the appropriate buttons on the debugger toolbar
Watch Block I/O Display Block I/O

or by entering the appropriate debugger command.
Command probe disp trace Displays a Block’s I/O

Immediately At every breakpoint Whenever the block executes

13-28

Displaying Information About the Simulation

Displaying I/O of Selected Block
To display the I/O of a block, select the block and click the probe command in command-line mode.
Command probe Description

in GUI mode or enter

Enter or exit probe mode. In probe mode, the debugger displays the current inputs and outputs of any block that you select in the model’s block diagram. Typing any command causes the debugger to exit probe mode. Display I/O of selected block. Print the I/O of the block specified by system number s and block number b.

probe gcb probe s:b

The debugger prints the current inputs, outputs, and states of the selected block in the debugger Outputs pane (GUI mode) or the MATLAB Command Window. The probe command is useful when you need to examine the I/O of a block whose I/O is not otherwise displayed. For example, suppose you are using the step command to run a model method by method. Each time you step the simulation, the debugger displays the inputs and outputs of the current block. The probe command lets you examine the I/O of other blocks as well.

Displaying Block I/O Automatically at Breakpoints
The disp command causes the debugger to display a specified block’s inputs and outputs whenever it halts the simulation. You can specify a block either by entering its block index or by selecting it in the block diagram and entering gcb as the disp command argument. You can remove any block from the debugger’s list of display points, using the undisp command. For example, to remove block 0:0, either select the block in the model diagram and enter undisp gcb or simply enter undisp 0:0.

Note Automatic display of block I/O at breakpoints is not available in the debugger’s GUI mode.

13-29

13

Simulink Debugger

The disp command is useful when you need to monitor the I/O of a specific block or set of blocks as you step through a simulation. Using the disp command, you can specify the blocks you want to monitor and the debugger will then redisplay the I/O of those blocks on every step. Note that the debugger always displays the I/O of the current block when you step through a model block by block, using the step command. You do not need to use the disp command if you are interested in watching only the I/O of the current block.

Watching Block I/O
To watch a block, select the block and click in the debugger toolbar or enter the trace command. In GUI mode, if a breakpoint exists on the block, you can set a watch on it as well by selecting the check box for the block in the watch column of the Break/Display points pane. In command-line mode, you can also specify the block by specifying its block index in the trace command. You can remove a block from the debugger’s list of trace points using the untrace command. The debugger displays a watched block’s I/O whenever the block executes. Watching a block allows you obtain a complete record of the block’s I/O without having to stop the simulation.

Displaying Algebraic Loop Information
The atrace command causes the debugger to display information about a model’s algebraic loops (see “Algebraic Loops” on page 2-24) each time they are solved. The command takes a single argument that specifies the amount of information to display.
Command atrace 0 atrace 1 Displays for Each Algebraic Loop

No information The loop variable solution, the number of iterations required to solve the loop, and the estimated solution error Same as level 1 Level 2 plus the Jacobian matrix used to solve the loop Level 3 plus intermediate solutions of the loop variable

atrace 2 atrace 3 atrace 4

13-30

Displaying Information About the Simulation

Displaying System States
The states debug command lists the current values of the system’s states in the MATLAB Command Window. For example, the following sequence of commands shows the states of the Simulink bouncing ball demo (bounce) after its first and second time steps.
sldebug bounce [Tm=0] **Start** of system 'bounce' outputs (sldebug @0:0 'bounce/Position'): states Continuous state vector (value,index,name): 10 0 (0:0 'bounce/Position') 15 1 (0:5 'bounce/Velocity') (sldebug @0:0 'bounce/Position'): next [Tm=0.01] **Start** of system 'bounce' outputs (sldebug @0:0 'bounce/Position'): states Continuous state vector (value,index,name): 10.1495095 0 (0:0 'bounce/Position') 14.9019 1 (0:5 'bounce/Velocity')

Displaying Integration Information
The ishow command toggles display of integration information. When enabled, this option causes the debugger to display a message each time the simulation takes a time step or encounters a state that limits the size of a time step. In the first case, the debugger displays the size of the time step, for example,
[Tm=9.996264188473381] Step of 0.01 was taken by integrator

In the second case, the debugger displays the state that currently determines the size of time steps, for example,
[Ts=9.676264188473388] Integration limited by 1st state of block 0:0 'bounce/Position'

13-31

13

Simulink Debugger

Displaying Information About the Model
In addition to providing information about a simulation, the debugger can provide you with information about the model that underlies the simulation.

Displaying a Model’s Sorted Lists
In GUI mode, the debugger’s Sorted List pane displays lists of blocks for a model’s root system and each nonvirtual subsystem. Each list lists the blocks that the subsystems contains sorted according to their computational dependencies, alphabetical order, and other block sorting rules. In command-line mode, you can use the slist command to display a model’s sorted lists.
---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks, directFeed=0] 0:0 'vdp/Integrator1' (Integrator) 0:1 'vdp/Out1' (Outport) 0:2 'vdp/Integrator2' (Integrator) 0:3 'vdp/Out2' (Outport) 0:4 'vdp/Fcn' (Fcn) 0:5 'vdp/Product' (Product) 0:6 'vdp/Mu' (Gain) 0:7 'vdp/Scope' (Scope) 0:8 'vdp/Sum' (Sum)

These displays include the block index for each command. You can thus use them to to determine the block IDs of the model’s blocks. Some debugger commands accept block IDs as arguments.

Identifying Blocks in Algebraic Loops
If a block belongs to an algebraic list, the slist command displays an algebraic loop identifier in the entry for the block in the sorted list. The identifier has the form
algId=s#n

where s is the index of the subsystem containing the algebraic loop and n is the index of the algebraic loop in the subsystem. For example, the following entry

13-32

Displaying Information About the Model

for an Integrator block indicates that it participates in the first algebraic loop at the root level of the model.
0:1 'test/ss/I1' (Integrator, tid=0) [algId=0#1, discontinuity]

You can use the debugger’s ashow command to highlight the blocks and lines that make up an algebraic loop. See “Displaying Algebraic Loops” on page 13-35 for more information.

Displaying a Block
To determine the block in a model’s diagram that corresponds to a particular index, enter bshow s:b at the command prompt, where s:b is the block index. The bshow command opens the system containing the block (if necessary) and selects the block in the system’s window.

Displaying a Model’s Nonvirtual Systems
The systems command displays a list of the nonvirtual systems in the model being debugged. For example, the Simulink clutch demo (clutch) contains the following systems:
sldebug clutch [Tm=0] **Start** of system 'clutch' outputs (sldebug @0:0 'clutch/Clutch Pedal'): systems 0 'clutch' 1 'clutch/Locked' 2 'clutch/Unlocked'

Note The systems command does not list subsystems that are purely graphical in nature, that is, subsystems that the model diagram represents as Subsystem blocks but that Simulink solves as part of a parent system. In Simulink models, the root system and triggered or enabled subsystems are true systems. All other subsystems are virtual (that is, graphical) and hence do not appear in the listing produced by the systems command.

Displaying a Model’s Nonvirtual Blocks
The slist command displays a list of the nonvirtual blocks in a model. The listing groups the blocks by system. For example, the following sequence of

13-33

13

Simulink Debugger

commands produces a list of the nonvirtual blocks in the Van der Pol (vdp) demo model.
sldebug vdp [Tm=0] **Start** of system 'vdp' outputs (sldebug @0:0 'vdp/Integrator1'): slist ---- Sorted list for 'vdp' [12 blocks, 9 nonvirtual blocks, directFeed=0] 0:0 'vdp/Integrator1' (Integrator) 0:1 'vdp/Out1' (Outport) 0:2 'vdp/Integrator2' (Integrator) 0:3 'vdp/Out2' (Outport) 0:4 'vdp/Fcn' (Fcn) 0:5 'vdp/Product' (Product) 0:6 'vdp/Mu' (Gain) 0:7 'vdp/Scope' (Scope) 0:8 'vdp/Sum' (Sum)

Note The slist command does not list blocks that are purely graphical in nature, that is, blocks that indicate relationships or groupings among computational blocks.

Displaying Blocks with Potential Zero Crossings
The zclist command displays a list of blocks in which nonsampled zero crossings can occur during a simulation. For example, zclist displays the following list for the clutch sample model:
(sldebug 2:3 0:4 0:10 0:11 0:18 0:20 0:24 @0:0 'clutch/Clutch Pedal'): zclist 'clutch/Unlocked/Sign' (Signum) 'clutch/Lockup Detection/Velocities Match' (HitCross) 'clutch/Lockup Detection/Required Friction for Lockup/Abs' (Abs) 'clutch/Lockup Detection/Required Friction for Lockup/ Relational Operator' (RelationalOperator) 'clutch/Break Apart Detection/Abs' (Abs) 'clutch/Break Apart Detection/Relational Operator' (RelationalOperator) 'clutch/Unlocked' (SubSystem)

13-34

Displaying Information About the Model

0:27

'clutch/Locked' (SubSystem)

Displaying Algebraic Loops
The ashow command highlights a specified algebraic loop or the algebraic loop that contains a specified block. To highlight a specified algebraic loop, enter ashow s#n, where s is the index of the system (see “Identifying Blocks in Algebraic Loops” on page 13-32) that contains the loop and n is the index of the loop in the system. To display the loop that contains the currently selected block, enter ashow gcb. To show a loop that contains a specified block, enter ashow s:b, where s:b is the block’s index. To clear algebraic-loop highlighting from the model diagram, enter ashow clear.

Displaying Debugger Status
In GUI mode, the debugger displays the settings of various debug options, such as conditional breakpoints, in its Status panel. In command-line mode, the status command displays debugger settings. For example, the following sequence of commands displays the initial debug settings for the vdp model:
sim('vdp',[0,10],simset('debug','on')) [Tm=0] **Start** of system 'vdp' outputs (sldebug @0:0 'vdp/Integrator1'): status Current simulation time: 0 (MajorTimeStep) Last command: "" Stop in minor times steps is disabled. Break at zero crossing events is disabled. Break when step size is limiting by a state is disabled. Break on non-finite (NaN,Inf) values is disabled. Display of integration information is disabled. Algebraic loop tracing level is at 0.

13-35

13

Simulink Debugger

13-36

14
Performance Tools
The follow sections describe the tools that make up the Simulink Performance Tools option. About the Simulink Performance Tools Overview of the Performance Tools. Option (p. 14-2) The Simulink Accelerator (p. 14-3) Profiler (p. 14-13) Model Coverage Tool (p. 14-19) How to use the Simulink Accelerator to speed up a simulation. How to use the Simulink Profiler to tune the performance of your model How to use the Model Coverage tool to determine the effectiveness of your model tests.

14

Performance Tools

About the Simulink Performance Tools Option
The Simulink Performance Tools product includes the following tools: • Simulink Accelerator • Profiler • Model Coverage Tool

Note You must have the Performance Tools option installed on your system to use these tools.

14-2

The Simulink Accelerator

The Simulink Accelerator
The Simulink Accelerator speeds up the execution of Simulink models. The Accelerator uses portions of the Real-Time Workshop, a MathWorks product that automatically generates C code from Simulink models, and your C compiler to create an executable. Note that although the Simulink Accelerator takes advantage of Real-Time Workshop technology, the Real-Time Workshop is not required to run it. Also, if you do not have a C compiler installed on your Windows PC, you can use the lcc compiler provided by The MathWorks.

Note You must have the Simulink Performance Tools option installed on your system to use the accelerator.

Accelerator Limitations
The accelerator does not support models with algebraic loops. If the accelerator detects an algebraic loop in your model, it halts the simulation and displays an error message.

How the Accelerator Works
The Simulink Accelerator works by creating and compiling C code that takes the place of the interpretive code that Simulink uses when in Normal mode (that is, when Simulink is not in Accelerator mode). The Accelerator generates the C code from your Simulink model, and MATLAB’s mex function invokes your compiler and dynamically links the generated code to Simulink. The Simulink Accelerator removes much of the computational overhead required by Simulink models when in Normal mode. It works by replacing blocks that are designed to handle any possible configuration in Simulink with compiled versions customized to your particular model’s configuration. Through this method, the Accelerator is able to achieve substantial improvements in performance for larger Simulink models. The performance gains are tied to the size and complexity of your model. In general, as size and complexity grow, so do gains in performance. Typically, you can expect a 2X-to-6X gain in performance for models that use built-in Simulink blocks.

14-3

14

Performance Tools

Note Blocks such as the Quantizer block might exhibit slight differences in output on some systems because of slight differences in the numerical precision of the interpreted and compiled versions of the model.

Runnning the Simulink Accelerator
To activate the Simulink Accelerator, select Accelerator from the Simulation menu for your model. This picture shows the procedure using the F14 flight control model.

Alternatively, you can select Accelerator from the menu located on the right-hand side of the toolbar. To begin the simulation, select Start from the Simulation menu. When you start the simulation, the Accelerator generates the C code and compiles it. The Accelerator then does the following: • Places the generated code in a subdirectory called modelname_accel_rtw (in this case, f14_accel_rtw) • Places a compiled MEX-file in the current working directory • Runs the compiled model Note If your code does not compile, the most likely reason is that you have not set up the mex command correctly. Run mex -setup at the MATLAB prompt and select your C compiler from the list shown during the setup.

14-4

The Simulink Accelerator

The Accelerator uses Real-Time Workshop technology to generate the code used to accelerate the model. However, the generated code is suitable only for acceleration of the model. If you want to generate code for other purposes, you must use the Real-Time Workshop.

Handling Changes in Model Structure
After you use the Simulink Accelerator to simulate a model, the MEX-file containing the compiled version of the model remains available for use in later simulations. Even if you exit MATLAB, you can reuse the MEX-file in later MATLAB or Simulink sessions. If you alter the structure of your Simulink model, for example, by adding or deleting blocks, the Accelerator automatically regenerates the C code and updates (overwrites) the existing MEX-file. Examples of model structure changes that require the Accelerator to rebuild include • Changing the method of integration • Adding or deleting blocks or connections between blocks • Changing the values of nontunable block parameters, for example, the Initial seed parameter of the Random Number block (see “Tunable Parameters” on page 2-8 for more information) • Changing the number of inputs or outputs of blocks, even if the connectivity is vectorized • Changing the number of states in the model • Changing function in the Trigonometric Function block • Changing the signs used in a Sum block • Adding a Target Language Compiler™ (TLC) file to inline an S-function The Simulink Accelerator displays a warning when you attempt any impermissible model changes during simulation. The warning does not stop the current simulation. To make the model alterations, stop the simulation, make the changes, and restart. Some changes are permitted in the middle of simulation. Simple changes like adjusting the value of a Gain block do not cause a warning. When in doubt, try to make the change. If you do not see a warning, the Accelerator accepted the change.

14-5

14

Performance Tools

Note that the Accelerator does not display warnings that blocks generate during simulation. Examples include divide-by-zero and integer overflow. This is a different set of warnings from those discussed previously.

Increasing Performance of Accelerator Mode
In general, the Simulink Accelerator creates code optimized for speed with most blocks available in Simulink. There are situations, however, where you can further improve performance by adjusting your simulation or being aware of Accelerator behavior. These include • Simulation Parameters dialog box — The options in the Diagnostics and Advanced panes can affect Accelerator performance. To increase the performance: - Disable Consistency checking and Bounds checking on the Diagnostics pane. - Set Signal storage reuse on in the Advanced pane. • Stateflow — The Accelerator is fully compatible with Stateflow, but it does not improve the performance of the Stateflow portions of models. Disable Stateflow debugging and animation to increase performance of models that include Stateflow blocks. • User-written S-functions — The Accelerator cannot improve simulation speed for S-functions unless you inline them using the Target Language Compiler. Inlining refers to the process of creating TLC files that direct Real-Time Workshop to create C code for the S-function. This eliminates unnecessary calls to the Simulink application program interface (API). For information on how to inline S-functions, consult the Target Language Compiler Reference Guide, which is available on the MathWorks Web site, www.mathworks.com. It is also available on the documentation CD provided with MATLAB. • S-functions supplied by Simulink and blocksets — Although the Simulink Accelerator is compatible with all the blocks provided with Simulink and blocksets, it does not improve the simulation speed for M-file or C-MEX S-Function blocks that do not have an associated inlining TLC file. • Logging large amounts of data — If you use Workspace I/O, To Workspace, To File, or Scope blocks, large amounts of data will slow the Accelerator down. Try using decimation or limiting outputs to the last N data points.

14-6

The Simulink Accelerator

• Large models — In both Accelerator and Normal mode, Simulink can take significant time to initialize large models. Accelerator speed up can be minimal if run times (from start to finish of a single simulation) are small.

Blocks That Do Not Show Speed Improvements
The Simulink Accelerator speeds up execution only of blocks from the Simulink, Fixed Point, and DSP blocksets. Further, the Accelerator does not improve the performance of some blocks in the Simulink and DSP blocksets. The following sections list these blocks.

Simulink Blocks
• Display • From File • From Workspace • Inport (root level only • MATLAB Fcn • Outport (root level only) • Scope • To File • To Workspace • Transport Delay • Variable Transport Delay • XY Graph

DSP Blockset Blocks
• Biquadratic Filter • Convolution • Direct-Form II Transpose Filter • Dyadic Analysis Filter Bank • Dyadic Synthesis Filter Bank • FIR Decimation • FIR Interpolation

14-7

14

Performance Tools

• FIR Rate Conversion • From Wave Device • From Wave File • Integer Delay • Variable Integer Delay • Matrix Multiply • Matrix To Workspace • Triggered Signal To Workspace • Triggered Signal From Workspace • Time-Varying Direct-Form II Transpose Filter • To Wave File • To Wave Device • Wavelet Analysis • Wavelet Synthesis • Zero Pad

User-Written S-Function Blocks
In addition, the Accelerator does not speed up user-written S-Function blocks unless you inline them using the Target Language Compiler and set SS_OPTION_USE_TLC_WITH_ACCELERATOR in the S-function itself. See “Controlling S-Function Execution” on page 14-12 for more information.

Using the Simulink Accelerator with the Simulink Debugger
If you have large and complex models that you need to debug, the Simulink Accelerator can shorten the length of your debugging sessions. For example, if you need to set a time break that is very large, you can use the Accelerator to reach the breakpoint more quickly. To run the Simulink debugger while in Accelerator mode:
1 Select Accelerator from the Simulation menu, then enter

sldebug modelname

at the MATLAB prompt.

14-8

The Simulink Accelerator

2 At the debugger prompt, set a time break:

tbreak 10000 continue
3 Once you reach the breakpoint, use the debugger command emode (execution

mode) to toggle between Accelerator and Normal mode. Note that you must switch to Normal mode to step the simulation by blocks. You must also switch to Normal mode to use the following debug commands: • trace • break • zcbreak • nanbreak • minor For more information on the Simulink debugger, see Chapter 13, “Simulink Debugger.”

Interacting with the Simulink Accelerator Programmatically
Using three commands, set_param, sim, and accelbuild, you can control the execution of your model from the MATLAB prompt or from M-files. This section describes the syntax for these commands and the options available.

Controlling the Simulation Mode
You can control the simulation mode from the MATLAB prompt using
set_param(gcs,'simulationmode','mode')

or
set_param(modelname,'simulationmode','mode')

You can use gcs (“get current system”) to set parameters for the currently active model (i.e., the active model window) and modelname if you want to specify the model name explicitly. The simulation mode can be either normal or accelerator.

14-9

14

Performance Tools

Simulating an Accelerated Model
You can also simulate an accelerated model using
sim(gcs); % Blocks the MATLAB prompt until simulation complete

or
set_param(gcs,'simulationcommand','start'); % Returns to the % MATLAB prompt % immediately

Again, you can substitute the modelname for gcs if you prefer to specify the model explicitly.

Building Simulink Accelerator MEX-Files Independent of Simulation
You can build the Simulink Accelerator MEX-file without actually simulating the model by using the accelbuild command, for example,
accelbuild f14

Creating the Accelerator MEX-files in batch mode using accelbuild allows you to build the C code and executables prior to running your simulations. When you use the Accelerator interactively at a later time, it does not need to generate or compile MEX-files at the start of the accelerated simulations. You can use the accelbuild command to specify build options such as turning on debugging symbols in the generated MEX-file.
accelbuild f14 OPT_OPTS=-g

Comparing Performance
If you want to compare the performance of the Simulink Accelerator to Simulink in Normal mode, use tic, toc, and the sim command. To run the F14 example, use this code (make sure you’re in Normal mode).
tic,[t,x,y]=sim('f14',1000);toc elapsed_time = 14.1080

In Accelerator mode, this is the result.

14-10

The Simulink Accelerator

elapsed_time = 6.5880

These results were achieved on a Windows PC with a 233 MHz Pentium processor. Note that for models with very short run times, the Normal mode simulation might be faster, because the Accelerator checks at the beginning of any run to see whether it must regenerate the MEX-file. This adds a small overhead to the run-time.

Customizing the Simulink Accelerator Build Process
Typically no customization is necessary for the Simulink Accelerator build process. However, because the Accelerator uses the same underlying mechanisms as the Real-Time Workshop to generate code and build the MEX-file, you can use three parameters to control the build process.
AccelMakeCommand AccelSystemTargetFile AccelTemplateMakeFile

The three options allow you to specify custom Make command, System target, and Template makefiles. Each of these parameters governs a portion of the code generation process. Using these options requires an understanding of how the Real-Time Workshop generates code. For a description of the Make command, the System target file, and Template makefile, see the Real-Time Workshop User’s Guide, which is available on the MathWorks Web site, www.mathworks.com, and on the documentation CD provided with MATLAB. The syntax for setting these parameters is
set_param(gcs, 'parameter', 'string')

or
set_param(modelname, 'parameter', 'string')

where gcs (“get current system”) is the currently active model and 'parameter' is one of the three parameters listed above. Replace 'string' with your string that defines a custom value for that parameter.

14-11

14

Performance Tools

Controlling S-Function Execution
Inlining S-functions using the Target Language Compiler increases performance when used with the Simulink Accelerator. By default, however, the Accelerator ignores an inlining TLC file for an S-function, even though the file exists. One example of why this default was chosen is a device driver S-Function block for an I/O board. The S-function TLC file is typically written to access specific hardware registers of the I/O board. Because the Accelerator is not running on a target system, but rather is a simulation on the host system, it must avoid using the inlined TLC file for the S-function. Another example is when the TLC file and MEX-file versions of an S-function are not compatible in their use of work vectors, parameters, and/or initialization. If your inlined S-function is not complicated by these issues, you can direct the Accelerator to use the TLC file instead of the S-function MEX-file by specifying SS_OPTION_USE_TLC_WITH_ACCELERATOR in the mdlInitializeSizes function of the S-function. When set, the Accelerator uses the inlining TLC file and full performance increases are realized. For example:
static void mdlInitializeSizes(SimStruct *S) { /* Code deleted */ ssSetOptions(S, SS_OPTION_USE_TLC_WITH_ACCELERATOR); }

14-12

Profiler

Profiler
The Simulink simulation profiler collects performance data while simulating your model and generates a report, called a simulation profile, based on the data. The simulation profile generated by the profiler shows you how much time Simulink spends executing each function required to simulate your model. The profile enables you to determine the parts of your model that require the most time to simulate and hence where to focus your model optimization efforts.

Note You must have the Simulink Performance Tools option installed on your system to use the profiler.

How the Profiler Works
The following pseudocode summarizes the execution model on which the profiler is based.
Sim() ModelInitialize(). ModelExecute() for t = tStart to tEnd Output() Update() Integrate() Compute states from derivs by repeatedly calling: MinorOutput() MinorDeriv() Locate any zero crossings by repeatedly calling: MinorOutput() MinorZeroCrossings() EndIntegrate Set time t = tNew. EndModelExecute ModelTerminate EndSim

14-13

14

Performance Tools

According to this conceptual model, Simulink executes a Simulink model by invoking the following functions zero, one, or more times, depending on the function and the model.
Function sim Purpose Level

Simulate the model. This top-level function invokes the other functions required to simulate the model. The time spent in this function is the total time required to simulate the model. Set up the model for simulation. Execute the model by invoking the output, update, integrate, etc., functions for each block at each time step from the start to the end of simulation. Compute the outputs of a block at the current time step. Update a block’s state at the current time step. Compute a block’s continuous states by integrating the state derivatives at the current time step. Compute a block’s output at a minor time step. Compute a block’s state derivatives at a minor time step. Compute a block’s zero-crossing values at a minor time step.

System

ModelInitialize ModelExecute

System System

Output

Block Block Block

Update

Integrate

MinorOutput

Block Block Block

MinorDeriv

MinorZeroCrossings

14-14

Profiler

Function ModelTerminate

Purpose

Level

Free memory and perform any other end-of-simulation cleanup. Compute the output of a nonvirtual subsystem (see “Solvers” on page 2-17) at the current time step by invoking the output, update, integrate, etc., functions for each block that it contains. The time spent in this function is the time required to execute the nonvirtual subsystem.

System Block

Nonvirtual Subsystem

The profiler measures the time required to execute each invocation of these functions and generates a report at the end of the model that describes how much time was spent in each function.

Enabling the Profiler
To profile a model, open the model and select Profiler from the Simulink Tools menu. Then start the simulation. When the simulation finishes, Simulink generates and displays the simulation profile for the model in the MATLAB help browser.

14-15

14

Performance Tools

The Simulation Profile
Simulink stores the simulation profile in the MATLAB working directory.

The report has two sections: a summary and a detailed report.

Summary Section
The summary file displays the following performance totals.
Item Description

Total Recorded Time Number of Block Methods

Total time required to simulate the model Total number of invocations of block-level functions (e.g., Output())

14-16

Profiler

Item

Description

Number of Internal Methods Number of Nonvirtual Subsystem Methods Clock Precision

Total number of invocations of system-level functions (e.g., ModelExecute) Total number of invocations of nonvirtual subsystem functions Precision of the profiler’s time measurement

The summary section then shows summary profiles for each function invoked to simulate the model. For each function listed, the summary profile specifies the following information.
Item Description

Name Time

Name of function. This item is a hyperlink. Clicking it displays a detailed profile of this function. Total time spent executing all invocations of this function as an absolute value and as a percentage of the total simulation time Number of times this function was invoked Average time required for each invocation of this function, including the time spent in functions invoked by this function Average time required to execute this function, excluding time spent in functions called by this function Specifies the block or model executed for which this function is invoked. This item is a hyperlink. Clicking it highlights the corresponding icon in the model diagram. Note that the link works only if you are viewing the profile in the MATLAB help browser.

Calls Time/Call

Self Time Location

14-17

14

Performance Tools

Detailed Profile Section
This section contains detailed profiles for each function invoked to simulate the model. Each detailed profile contains all the information shown in the summary profile for the function. In addition, the detailed profile displays the function (parent function) that invoked the profiled function and the functions (child functions) invoked by the profiled function. Clicking the name of the parent or a child function takes you to the detailed profile for that function.

14-18

Model Coverage Tool

Model Coverage Tool
The Model Coverage Tool determines the extent to which a model test case exercises simulation pathways through a model. The percentage of pathways that a test case exercises is called its model coverage. Model coverage is a measure of how thoroughly a test tests a model. The Model Coverage Tool therefore helps you to validate your model tests.

Note You must have the Simulink Performance Tools option installed on your system to use the Model Coverage Tool.

How the Model Coverage Tool Works
The Model Coverage Tool works by analyzing the execution of blocks that directly or indirectly determine simulation pathways through your model. If a model includes Stateflow charts, the tool also analyzes the states and transitions of those charts. During a simulation run, the tool records the behavior of the covered blocks, states, and transitions. At the end of the simulation, the tool reports the extent to which the run exercised potential simulation pathways through each covered block.

Coverage Analysis
The tool performs any or all of the following types of coverage analysis, depending on which coverage options you select: • Cyclomatic complexity Cyclomatic complexity is a measure of the structural complexity of a model. It approximates the McCabe complexity measure for code generated from the model. In general, the McCabe complexity measure is slightly higher because of error checks that the model coverage analysis does not consider.

14-19

14

Performance Tools

The Model Coverage Tool uses the following formula to compute the cyclomatic complexity of an object (block, chart, state, etc.):
N

c =

∑ (on – 1)
1

where N is the number of decision points that the object represents and on is the number of outcomes for the nth decision point. The tool adds 1 to the complexity number computed by this formula for atomic subsystems and Stateflow charts. • Decision coverage Examines items that represent decision points in a model, such as the Switch blocks and Stateflow states. For each item, decision coverage determines the percentage of the total number of simulation paths through the item that the simulation actually traversed. • Condition coverage Examines blocks that output the logical combination of their inputs, e.g., the Logic block, and Stateflow transitions. A test case achieves full coverage if it causes each input to each instance of a logic block in the model and each condition on a transition to be true at least once during the simulation and false at least once during the simulation. Condition coverage analysis reports for each block in the model whether the test case fully covered the block. • Modified condition/decision coverage (MC/DC) Examines blocks that output the logical combination of their inputs (e.g., the Logic block) and Stateflow transitions to determine the extent to which the test case tests the independence of logical block inputs and transition conditions. A test case achieves full coverage for a block if, for every input, there is a pair of simulation times when changing that input alone causes a change in the block’s output. A test case achieves full coverage for a transition if, for each condition on the transition, there is at least one time when a change in the condition triggers the transition. • Lookup table (LUT) coverage Examines blocks, such as the 1D Look-Up block, that output the result of looking up one or more inputs in a table of inputs and outputs, interpolating between or extrapolating from table entries as necessary. Lookup table coverage records the frequency that table lookups use each interpolation

14-20

Model Coverage Tool

interval. A test case achieves full coverage if it executes each interpolation and extrapolation interval at least once. For each LUT block in the model, the coverage report displays a colored map of the lookup table indicating where each interpolation was performed.

Covered Blocks
The following table lists the types of Simulink blocks analyzed by the tool and the kind of coverage analysis performed for each block.
Block Decision Condition MC/DC LUT

1D Look-Up 2D Look-Up Abs Combin. Logic Discrete-Time Integrator (when saturation limits are enabled) Fcn (Boolean operators only) For If Logic MinMax Multiport Switch Rate Limiter • • • (relative to slew rates) Relay • • • • • • • • •

• •

•

14-21

14

Performance Tools

Block

Decision

Condition

MC/DC

LUT

Saturation Subsystem Switch SwitchCase While

• • • • • • •

The tool also provides decision coverage for Stateflow states and events, state temporal logic decisions, and decision, condition, and MCDC coverage for Stateflow transitions.

Using the Model Coverage Tool
To develop effective tests with the Model Coverage Tool:
1 Develop one or more test cases for your model (see “Creating and Running

Test Cases” on page 14-23).
2 Run the test cases to verify that the model behavior is correct. 3 Analyze the coverage reports produced by Simulink. 4 Using the information in the coverage reports, modify the test cases to

increase their coverage or add new test cases that cover areas not covered by the current set of test cases.
5 Repeat the preceding steps until you are satisfied with the coverage of your

test set.

Note Simulink comes with an online demonstration of the use of the Model Coverage Tool to validate model tests. To run the demo, enter simcovdemo at the MATLAB command prompt.

14-22

Model Coverage Tool

Creating and Running Test Cases
The Test Coverage Tool provides two MATLAB commands, cvtest and cvsim, for creating and running test cases. The cvtest command creates test cases to be run by the cvsim command (see cvsim on page 14-37 and cvtest on page 14-38). You can also run the coverage tool interactively. To do so, select Coverage Settings from the Simulink Tools menu. Simulink displays the Coverage Settings dialog box (see “Coverage Settings Dialog Box” on page 14-30). Select Enable Coverage Reporting and select OK to dismiss the dialog. Then select Start from the Simulation menu or the Start button on the Simulink toolbar. By default, Simulink saves coverage data for the current run in the workspace object covdata and cumulative coverage data in covCumulativeData. This data is appears in an HTML report at the end of simulation.You can select other options for generating, saving, and reporting coverage data. See the “Coverage Settings Dialog Box” on page 14-30 for more information.

Note You cannot run simulations with both model coverage reporting and acceleration options enabled. Simulink disables model coverage reporting if the accelerator is enabled. The block reduction optimization and the conditional branch input optimization are disabled when you perform coverage analysis as they interfere with coverage recording.

14-23

14

Performance Tools

The Coverage Report
The coverage report generated by the Model Coverage Tool contains the following sections.

Coverage Summary
The coverage summary section has two subsections: Tests and Summary.

14-24

Model Coverage Tool

• The “Tests” section lists the simulation start and stop time of each test case and any setup commands that preceded the simulation. The heading for each test case includes the test case label, e.g., “Test throttle,” specified using the cvtest command. • The “Summary” section summarizes the results for each subsystem. Clicking the name of the subsystem takes you to a detailed report for that subsystem.

Details
The “Details” section reports the model coverage results in detail.

14-25

14

Performance Tools

The “Details” section starts with a summary of results for the model as a whole followed by a list of subsystems and charts that the model contains. Subsections on each subsystem and chart follow. Clicking the name of a subsystem or chart in the model summary takes you to a detailed report on that subsystem or chart. The section for each subsystem starts with a summary of the test coverage results for the subsystem and a list of the subsystems that it contains. The overview is followed by block reports, one for each block that contains a decision point in the subsystem. Each section of the detailed report summarizes the results for the metrics used to test the object (model, subsystem, chart, block) to which the section applies. The sections for models and subsystems give results for the model and subsystem considered as a covered object and for the contents of the model or subsystem. Each section may include coverage results for more than one simulation run. The report reports the results for each simulation run in a separate column. A numeric prefix in the column heading indicates the run that produced the data.

Detail Tables and Charts
Each section can includes tables or charts that give detailed results for the metrics used to test the object. The following sections describe these tables and charts.
Decisions analyzed. This table applies to the decision metric. It lists possible

outcomes for a decision and the number of times that an outcome occurred in each test simulation.

The report highlights outcomes that did not occur in red. Clicking the block name causes Simulink to display the block diagram containing the block. Simulink also highlights the block to help you find it in the diagram.
Conditions analyzed. This table lists the number of occurrences of true and false conditions on each input port of a block.

14-26

Model Coverage Tool

MC/DC analysis. This table lists the MC/DC input condition cases represented by the corresponding block and the extent to which the reported test cases cover the condition cases.

Each row of the table represents a condition case for a particular input to the block. A condition case for input n of a block is a combination of input values such that changing the value of input n alone is sufficient to change the value of the block’s output. Input n is called the deciding input of the condition case. The table uses a condition case expression to represent a condition case. A condition case expression is a character string where • The position of a character in the string corresponds to the input port number. • The character at the position represents the value of the input (T means true, F means false). • Bold formatting of a character indicates that it corresponds to the value of the deciding input. For example, FTF represents a condition case for a three-input block where the second input is the deciding input. The table’s Decision/Condition column specifies the deciding input for an input condition case. The #1 True Out column specifies the deciding input value that causes the block to output true value for a condition case. The #1 True Out entry uses a condition case expression, e.g., FF, to express the values of all the inputs to the block, with the value of the deciding variable indicated by bold formatting.

14-27

14

Performance Tools

Parentheses around the expression indicate that the specified combination of inputs did not occur during the first (or only) test case included in this report. In other words, the test case did not cover the corresponding condition case. The #1 False Out column specifies the deciding input value that causes the block to output a false value and whether the value actually occurred during the first (or only) test case included in the report. The report adds additional #n True Out and #n False out columns for additional test cases, where n is the number of the test case. If you selected Treat Simulink Logic blocks as short-circuited in the Coverage Settings dialog box (see “Coverage Settings Dialog Box” on page 14-30), MC/DC coverage analysis does not check whether short-circuited inputs actually occur. The MC/DC details table uses an x in a condition expression (e.g., TFxxx) to indicate short-circuited inputs that were not analyzed by the tool.
Lookup Table Details. This section displays an interactive chart that summarizes

the extent to which the test cases covered the corresponding lookup table. You can click elements of the chart to view details of the coverage. Here is how to interpret and interact with the chart. If the corresponding block is a 1-D LUT block, the chart displays a 1-D array of cells. If the corresponding block is a 2-D LUT block, this section displays a 2-D array of cells.

14-28

Model Coverage Tool

In either case, each cell represents index entries, also known as breakpoints, in the lookup table. A cell’s border represents a set of adjacent table entries: • The left border represents the nth index (or row index in the case of a 2-D table). • The right border represents the n+1th index (or row index). • The top border represents the nth column index. • The bottom border represents the n+1th column index. A bold border segment indicates that at least one block input equal to the corresponding index occurred during the simulation. Click the border to display the exact number of hits for the corresponding index value.

A cell’s interior represents a table interpolation interval where the LUT block interpolates output values for inputs that occur in the interval. A shaded interior indicates that at least one input (or pair of inputs in the case of a 2-D block) occurred at the breakpoints or inside the interpolation interval of the cell. The intensity of the shading is proportional to the number of occurrences. The scale next to the chart shows the relationship between the shading intensity and the number of table interval/breakpoint hits.

The outermost cells of the chart represent the table’s extrapolation region. An extrapolation cell is visible only if inputs occurred in the corresponding extrapolation region. However, you can interact with any of the extrapolation cells, including invisible cells. Clicking an extrapolation cell displays the number of occurrences of inputs in the corresponding extrapolation region.

14-29

14

Performance Tools

Navigation Arrows. The section for each block contains a backward and a

forward arrow. Clicking the forward arrow takes you to the next section in the report that lists an uncovered outcome. Clicking the back arrow takes you back to the previous uncovered outcome in the report.

Chart Report
The detailed report for each Stateflow chart has a similar format, with decision tables for each state and transition in the chart. Note that information about Stateflow coverage is included in the Stateflow documentation.

Coverage Settings Dialog Box
The Coverage Settings dialog box allows you to select model coverage reporting options. The dialog box includes the following panes.

Coverage Pane

Enable Coverage Reporting. Causes Simulink to gather and report model coverage

data during simulation.
Coverage Instrumentation Path. Path of the subsystem for which Simulink gathers

and reports coverage data. By default, Simulink generates coverage data for the entire model.

14-30

Model Coverage Tool

To restrict coverage reporting to a particular subsystem, select Browse. Simulink displays a System Selector dialog.

Select the subsystem for which you want coverage reporting to be enabled. Click OK to dismiss the dialog.
Coverage Metrics. Select the types of test case coverage analysis that you want the tool to perform. See “Coverage Analysis” on page 14-19 for more information.

14-31

14

Performance Tools

Results Pane

Save cumulative results in workspace variable. If checked, this option causes the

Model Coverage tool to accumulate and save the cumulative coverage results of successive simulations in the workspace variable specified in the cvdata object name field below.
Save last run in workspace variable. If checked, this option causes the Model Coverage tool to save the results of the last simulation run in the workspace variable specified in the cvdata object name field below. Increment variable name with each simulation. If selected, this option causes

Simulink to increment the name of the coverage data object variable used to save the last run with each simulation. This prevents the current simulation run from overwriting the results of the previous run.

14-32

Model Coverage Tool

Report Pane

Generate HTML report. Causes Simulink to create an HTML report containing the coverage data. Simulink displays the report in the MATLAB Help browser at the end of the simulation. Click the Setting button to select various reporting options (see “HTML Settings” on page 14-35). Cumulative Runs. Accumulate and display coverage results from successive simulations in the report. The report is organized so that you can easily compare the additional coverage from the most recent run with the coverage from all prior runs in the session.

Cumulative coverage results can persist between MATLAB sessions by using cvsave to save results at the end of the session and cvload to load results at the beginning of the session. Note that the cvload parameter RESTORETOTAL must be 1 in order to restore cumulative results. Calculating cumulative coverage results is also possible at the command line via the + operator. The following script demonstrates this usage:
covdata1 = cvsim(test1); covdata2 = cvsim(test2); cvhtml('cumulative_report', covdata + covdata2);

Last Run. Display only the results of the previous simulation run in the report.

14-33

14

Performance Tools

Additional data to include in report. Names of coverage data from previous runs to include in the current report along with the current coverage data. Each entry causes a new set of columns to appear in the report.

Options Pane

Treat Simulink Logic blocks as short-circuited. Applies only to Condition and MC/DC

coverage. If enabled, coverage analysis treats Simulink logic blocks as though they short-circuit their input. In other words, Simulink treats such a block as if the block ignores remaining inputs if the previous inputs alone determine the block’s output. For example, if the first input to an And block is false, MC/DC coverage analysis ignores the values of the other inputs in determining MC/DC coverage for a test case. You should select this option if you plan to generate code from a model and want the MC/DC coverage analysis to approximate the degree of coverage that your test cases would achieve for the generated code (most high-level languages short-circuit logic expressions). Note that a test case that does not achieve full MC/DC coverage for a non-short-circuited logic expressions might, in fact, achieve full coverage for short-circuited expressions.
Warn when unsupported blocks exist in a model. Select this option if you want the

tool to warn you at the end of the simulation if the model contains blocks that require coverage analysis but are not currently covered by the tool.
Disable coverage for blocks used in assertion checks. Disable coverage of blocks from Simulink’s Model Verification library (see “Model Verification”).

14-34

Model Coverage Tool

HTML Settings
The HTML Settings dialog box allows you to choose various model coverage report options. To display the dialog box, click Settings on the Coverage Settings dialog box. The HTML Settings dialog box appears.

Include each test in the model summary. When this option is selected, the model

hierarchy table at the top of the HTML report includes columns listing the coverage metrics for each test. When this option is not selected, the model summary reports only the total coverage.
Produce bar graphs in the model summary. Causes the model summary to include bar graphs for each coverage result. The bar graphs provide a visual representation of the coverage. Use two color bar graphs (red,blue). Causes the report to use red and blue bar graphs instead of black and white. The color graphs might not print well in black and white. Display hit/count ratio in the model summary. Reports coverage numbers as both a

percentage and a ratio, e.g., 67% (8/12).
Do not report fully covered model objects. Causes the coverage report to include only model objects that the simulation does not cover fully. This option is useful when you are developing tests, because it reduces the size of the generated reports. Include cyclomatic complexity numbers in summary. Include the cyclomatic

complexity (see “Coverage Analysis” on page 14-19) of the model and its toplevel subsystems and charts in the report summary. A bold cyclomatic

14-35

14

Performance Tools

complexity number indicates that the analysis considered the subsystem itself to be an object when computing its complexity. This occurs for atomic and conditionally executed subsystems as well as Stateflow blocks.
Include cyclomatic complexity numbers in block details. Include the cyclomatic

complexity metric in the block details section of the report.

Model Coverage Commands
cvhtml
Produce an HTML report of cvdata objects.
cvhtml(file,data)

Create an HTML report of the coverage results in the cvdata object data. The report is written to file.
cvhtml(file,data1,data2,...)

Create a combined report of several data objects. The results from each object are displayed in a separate column. Each data object must correspond to the same root subsystem, or the function produces errors.
cvhtml(file,data,data2,...,detail)

Specify the detail level of the report with the value of detail, an integer between 0 and 3. Greater numbers indicate greater detail. The default value is 2.

cvload
Load coverage tests and results from file.
[TESTS, DATA] = CVLOAD(FILENAME)

Load the tests and data stored in the text file FILENAME.CVT. The tests that are successfully loaded are returned in TESTS, a cell array of cvtest objects. DATA is a cell array of cvdata objects that were successfully loaded. DATA has the same size as TESTS but can contain empty elements if a particular test has no results.
[TESTS, DATA] = CVLOAD(FILENAME, RESTORETOTAL)

14-36

Model Coverage Tool

If RESTORETOTAL is 1, the cumulative results from prior runs are restored. If RESTORETOTAL is unspecified or zero, the model's cumulative results are cleared. Special considerations: • If a model with the same name exists in the coverage database, only the compatible results are loaded from file and they reference the existing model to prevent duplication. • If the Simulink models referenced from the file are open but do not exist in the coverage database, the coverage tool resolves the links to the existing models. • When loading several files that reference the same model, only the results that are consistent with the earlier files are loaded.

cvsave
Save coverage tests and results to file.
cvsave(filename,model)

Save all the tests and results related to model in the text file filename.cvt.
cvsave(filename, test1, test2, ...)

Save the specified tests in the text file filename.cvt. Information about the referenced models is also saved.
cvsave(filename, data1, data2, ...)

Save the specified data objects, the tests that created them, and the referenced models’ structure in the text file filename.cvt.

cvsim
Run a test case.

Note You do not have to enable model coverage reporting (see “Creating and Running Test Cases” on page 14-23) to use this command.

This command can take the following forms.

14-37

14

Performance Tools

data = cvsim(test)

Execute the cvtest object test by starting a simulation run for the corresponding model. The results are returned in a cvdata object.
[data,t,x,y] = cvsim(test)

Returns the simulation time vector, t, state values, x, and output values, y.
[data,t,x,y] = cvsim(test, timespan, options)

Override the default simulation values. For more information, see the documentation for the sim command.
[data1, data2, ...] = cvsim(test1, test2, ...)

Execute a set of tests and return the results in cvdata objects.
[data1,t,x,y] = cvsim(root, label, setupcmd)

Create and execute a cvtest object.

cvtest
Creates a test specification as required by cvsim. This command has the following syntax:
class_id = cvtest(root)

Create a test specification for the Simulink model containing root. root can be the name of the Simulink model or the handle to a Simulink model. root can also be a name or handle to a subsystem within the model, in which case only this subsystem and its descendants are instrumented for analysis.
class_id = cvtest(root, label)

Creates a test with the given label. The label is used for reporting results.
class_id = cvtest(root, label, setupcmd)

Creates a test with a setup command that is executed in the base MATLAB workspace just prior to running the instrumented simulation. The setup command is useful for loading data just prior to a test.

14-38

Model Coverage Tool

The cvtest object returned has the following structure:
Field id, modelcov(read-only) rootPath Description

Internal data-dictionary IDs Name of the system or subsystem instrumented for analysis String used when reporting results Command executed in the base workspace just prior to simulation.

label setupCmd

settings decision condition mcdc tableExec

Set to 1 if decision coverage desired Set to 1 if condition coverage desired Set to 1 if MC/DC coverage desired Set to 1 if look-up table coverage desired

Coverage Script Example
The following example demonstrates some of the common model coverage commands:
testObj1 = cvtest('ratelim_harness/Adjustable Rate Limiter'); testObj1.label = 'Gain within slew limits'; testObj1.setupCmd = 'load(''within_lim.mat'');'; testObj1.settings.mcdc = 1; testObj2 = cvtest('ratelim_harness/Adjustable Rate Limiter'); testObj2.label = 'Rising gain that temporarily exceeds slew limit'; testObj2.setupCmd = 'load(''rising_gain.mat'');'; testObj2.settings.mcdc = 1; [dataObj1,T,X,Y] = cvsim(testObj1,[0 2]); [dataObj2,T,X,Y] = cvsim(testObj2,[0 2]);

14-39

14

Performance Tools

cvhtml('ratelim_report',dataObj1,dataObj2); cumulative = dataObj1+dataObj2; cvsave('ratelim_testdata',cumulative);

In this example we create two cvtest objects and then simulate according to these specifications. Each cvtest object uses the setupCmd property to load a data file prior to simulation. Decision coverage is enabled by default, and we have chosen to enable MC/DC coverage as well. After simulation we use cvhtml to display the coverage results for our two tests and the cumulative coverage. Lastly, we compute cumulative coverage with the + operator and save the results. For more detailed examples of how to use the model coverage commands see simcovdemo.m and simcovdemo2.m in the coverage root folder.

14-40

Index
A
Abs block zero crossings 2-23 absolute tolerance definition 10-13 simulation accuracy 10-42 accelbuild command building Simulink Accelerator MEX-file 14-10 AccelMakeCommand parameter specifying custom Make command for Simulink Accelerator 14-11 AccelSystemTargetFile parameter specifying custom System target file for Simulink Accelerator 14-11 AccelTemplateMakeFile parameter specifying custom Template makefiles for Simulink Accelerator 14-11 Action Port block in subsystem 4-39 Adams-Bashforth-Moulton PECE solver 10-10 algebraic loops direct feedthrough blocks 2-24 displaying 2-26 highlighting 13-35 identifying blocks in 13-32 simulation speed 10-42 aligning blocks 5-5 annotations changing font 4-16 creating 4-16 definition 4-16 deleting 4-16 editing 4-16 moving 4-16 using symbols and Greek letters in 4-17 using TeX formatting commands in 4-17 using to document models 8-8 Apply button on Mask Editor 12-13 Assignment block and For Iterator block 4-43 Assignment mask parameter 12-18 attributes format string 4-15 AttributesFormatString block parameter 5-13 Autoscale icon drawing coordinates 12-16

B
Backlash block zero crossings 2-23 backpropagating sample time 2-34 Backspace key deleting annotations 4-16 deleting blocks 5-6 deleting labels 6-18 Band-Limited White Noise block simulation speed 10-42 block callback parameters 4-73 Block data tips 5-2 block descriptions creating 12-8 block diagrams printing 3-12 block icons displaying execution order on 5-20 block libraries adding to Library Browser 5-37 creating 5-29 definition 5-28 modifying 5-29 new_system command 5-29 searching 5-37 block names changing location 5-17

I-1

Index

copied blocks 5-4 editing 5-17 flipping location 5-17 generated for copied blocks 5-5 hiding and showing 5-18 location 5-16 rules 5-16 block parameters about 5-7 displaying beneath a block icon 5-19 modifying during simulation 10-7 scalar expansion 6-9 setting 5-7 block priorities assigning 5-19 Block Properties dialog box 5-10 block type of masked block 12-26 blocks aligning 5-5 assigning priorities 5-19 associating user data with 7-29 callback routines 4-71 changing font names 5-17 changing icons font 5-17 changing location of names 5-17 checking connections 2-13 connecting automatically 4-9 connecting manually 4-11 copying from Library Browser 5-37 copying into models 5-4 copying to other applications 5-5 deleting 5-6 disconnecting 4-15 drop shadows 5-16 duplicating 5-6 grouping to create subsystem 4-21 hiding block names 5-18

input ports with direct feedthrough 2-24 library 5-28 moving between windows 5-5 moving in a model 5-5 names editing 5-17 orientation 5-15 reference 5-28 resizing 5-15 reversing signal flow through 8-3 showing block names 5-18 signal flow through 5-15 under mask 12-13 updating 2-13 blocks See also block names 5-16 Bogacki-Shampine formula 10-9, 10-10 Boolean type checking 10-30 bounding box grouping blocks for subsystem 4-21 selecting objects 4-3 branch lines 4-12 Break Library Link menu item 5-32 breaking links to library block 5-31 breakpoints setting 13-22 setting at end of block 13-25 setting at timesteps 13-25 setting on nonfinite values 13-25 setting on step-size-limiting steps 13-26 setting on zero crossings 13-26 Browser 9-8 building models exercise 1-7 tips 8-8

I-2

Index

C
callback routines 4-71 callback routines, referencing mask parameters in 4-73 callback tracing 4-71 Cancel button on Mask Editor 12-13 changing signal labels font 6-18 Clear menu item 5-6 Clock block example 11-3 Close Browser menu item 9-10 Close Model menu item 9-10 CloseFcn block callback parameter 4-73 CloseFcn model callback parameter 4-72 colors for sample times 2-34 composite signals 6-4 conditionally executed subsystems 4-26 configurable subsystem 4-55 connecting blocks 4-11 connecting lines to input ports 1-12 ConnectionCallback port callback parameters 4-76 consistency checking 10-26 constant sample time 2-34 continuous sample time 2-29 control flow blocks and Stateflow 4-46 control flow diagrams and Stateflow 4-38 compared to Stateflow 4-45 do-while 4-42 for 4-43 if-else 4-38 resetting of states 4-45 sample times 4-45 switch 4-40

while 4-41 control flow subsystem 4-26 control input 4-26 control signal 4-26, 6-4 Control System Toolbox linearization 11-5 copy definition 5-28 Copy menu item 5-4 CopyFcn block callback parameter 4-73 copying blocks 5-4 signal labels 6-18 Coverage Settings dialog box Model Coverage Tool 14-30 Create Mask menu item 12-13 Created model parameter 4-85 Creator model parameter 4-85 Cut menu item 5-5 cvhtml command Model Coverage Tool 14-36 cvload command Model Coverage Tool 14-36 cvreport command Model Coverage Tool 14-37 cvsave command Model Coverage Tool 14-37 cvsim command Model Coverage Tool 14-37 cvtest command Model Coverage Tool 14-38

D
dash-dot lines 6-4 Data Class Designer 7-14 data objects

I-3

Index

classes 7-9 creating 7-10 properties accessing 7-11 data types displaying 7-5 propagation 7-5 specifying 7-4 dbstop if error command 12-25 dbstop if warning command 12-25 Dead Zone block zero crossings 2-23 debugger running incrementally 13-15 setting breakpoints 13-22 setting breakpoints at time steps 13-25 setting breakpoints at zero crossings 13-26 setting breakpoints on nonfinite values 13-25 setting breakpoints on step-size-limiting steps 13-26 skipping breakpoints 13-19 starting 13-11 stepping by time steps 13-18 debugging initialization commands 12-23 decimation factor saving simulation output 10-24 default solvers 10-9 Delete key deleting blocks 5-6 deleting signal labels 6-18 DeleteFcn block callback parameter 4-74 demos simcovdemo 14-22 Derivative block linearization 11-5 Description model parameter 4-86

description of masked blocks 12-26 diagnosing simulation errors 10-37 Diagnostics pane Simulation Parameters dialog box 10-25 diagonal line segments 4-13 diagonal lines 4-12 dialog boxes creating for masked blocks 12-29 direct feedthrough blocks 2-24 direct-feedthrough ports 2-14 disabled subsystem output 4-27 disabling zero-crossing detection 2-22 disconnecting blocks 4-15 discrete blocks in enabled subsystem 4-29 in triggered systems 4-34 discrete sample time 2-29 discrete solver 10-9 zero-crossing detection 10-11 Discrete-Time Integrator block sample time colors 2-34 discrete-time systems 2-28 discretization methods 4-52 discretizing a Simulink model 4-50 Display Alphabetical List menu item 9-10 Display Hierarchical List menu item 9-10 dlinmod function extracting linear models 11-4 Documentation pane of Mask Editor 12-12 Dormand-Prince formula 10-9 pair 10-10 do-while control flow diagram 4-42 drawing coordinates Autoscale 12-16 normalized 12-16

I-4

Index

Pixel 12-17 drop shadows 5-16 duplicating blocks 5-6

displaying 5-20 Exit MATLAB menu item 3-22 Expand All menu item 9-10 Expand Library Links menu item 9-10

E
editing look-up tables 5-21 either trigger event 4-31 Enable block creating enabled subsystems 4-27 outputting enable signal 4-29 states when enabling 4-28 enabled subsystems 4-26 setting states 4-28 ending Simulink session 3-22 equations modeling 8-2 error tolerance 10-13 simulation accuracy 10-42 simulation speed 10-41 Euler’s method 10-9 eval command masked block help 12-27 examples Clock block 11-3 continuous system 8-3 converting Celsius to Fahrenheit 8-2 equilibrium point determination 11-7 linearization 11-4 masking 12-5 multirate discrete model 2-31 Outport block 11-2 return variables 11-2 Scope block 11-2 To Workspace block 11-3 Transfer Function block 8-4 execution order

F
falling trigger event 4-31 Fcn block simulation speed 10-41 files writing to 10-6 Final State check box 10-25 final states saving 10-24 fixed in minor time step 2-29 fixed-point data 7-3 fixed-step solvers definition 2-18 list 10-9 Flip Block menu item 5-15 Flip Name menu item 5-17 floating Display block 10-7 floating Scope block 10-7 font annotations 4-16 block icons 5-17 block names 5-17 signal labels 6-18 Font menu item changing block name font 5-17 changing the font of a signal label 6-18 for control flow diagram 4-43 For Iterator block and Assignment block 4-43 in subsystem 4-43 output iteration number 4-43

I-5

Index

specifying number of iterations 4-43 fundamental sample time 10-11

hybrid systems integrating 2-35

G
Gain block algebraic loops 2-24 get_param command checking simulation status 10-43 Go To Library Link menu item 5-32 Greek letters using in annotations 4-17 grouping blocks 4-20

I
Icon pane of Mask Editor 12-12 icons creating for masked blocks 12-14 If block connecting outputs 4-39 data input ports 4-39 data output ports 4-39 if-else control flow diagram 4-38 and Stateflow 4-46 improved Euler formula 10-9 inherited sample time 2-30 InitFcn block callback parameter 4-74 InitFcn model callback parameter 4-72 initial conditions specifying 10-24 Initial State check box 10-25 initial states loading 10-25 initial step size how determined 10-13 simulation accuracy 10-42 initialization commands 12-23 debugging 12-23 Initialization pane of Mask Editor 12-12 inlining S-functions using the TLC and Simulink Accelerator performance 14-12 Inport block in subsystem 4-21 linearization 11-4 supplying input to model 10-18 inputs loading from base workspace 10-18

H
handles on selected object 4-3 held output of enabled subsystem 4-28 held states of enabled subsystem 4-28 Help button on Mask Editor 12-13 help text for masked blocks 12-8 Heun’s method 10-9 Hide Name menu item hiding block names 5-18 hiding port labels 4-24 Hide Port Labels menu item 4-24 hiding block names 5-18 hierarchy of model advantage of subsystems 8-8 replacing virtual subsystems 2-13 Hit Crossing block notification of zero crossings 2-21 zero crossings and Disable zero crossing detection option 2-23 HTML Settings dialog box Model Coverage Tool 14-35

I-6

Index

mixing vector and scalar 6-9 scalar expansion 6-9 Integrator block algebraic loops 2-24 example 8-3 sample time colors 2-34 simulation speed 10-42 zero crossings 2-23 invalid loops, avoiding 8-6 invalid loops, detecting 8-7 invariant constants 2-34

J
Jacobian matrices 10-11

K
keyboard actions summary 3-19 keyboard command 12-25

L
labeling signals 6-17 labeling subsystem ports 4-24 LastModificationDate model parameter 4-86 libinfo command 5-35 libraries See block libraries library blocks breaking links to 5-31 definition 5-28 finding 5-32 getting information about 5-33 Library Browser 5-35 adding libraries to 5-37 copying blocks from 5-37

library links creating 5-29 definition 5-28 disabling 5-30 displaying 5-33 modifying 5-30 propagating changes to 5-31 showing in Model Browser 9-9 status of 5-33 unresolved 5-30 line segments 4-12 diagonal 4-13 moving 4-13 line vertices moving 4-14 linear models extracting example 11-4 linearization 11-4 lines branch 4-12 carrying the same signal 1-12 connecting blocks 4-9 connecting to input ports 1-12 diagonal 4-12 moving 5-6 signals carried on 10-7 links breaking 5-31 to library block 5-29 LinkStatus block parameter 5-33 linmod function example 11-4 LoadFcn block callback parameter 4-74 loading from base workspace 10-18 loading initial states 10-25 location of block names 5-16

I-7

Index

Look Into System menu item 9-10 Look Under Mask Dialog menu item 9-10 Look Under Mask menu item 12-13 Look-Up Table Editor 5-21 look-up tables, editing 5-21 loops, algebraic See algebraic loops loops, avoiding invalid 8-6 loops, detecting invalid 8-7

M
Mask Editor 12-12 mask help text 12-8 Mask Subsystem menu item 12-12 mask type defining 12-8 mask workspace 12-25 masked blocks block descriptions 12-8 dialog boxes creating dynamic 12-29 setting parameters for 12-29 documentation 12-25 help text 12-8 icons creating 12-8 Icon pane 12-14 initialization commands 12-23 looking under 12-13 parameters assigning values to 12-18 default values 12-23 mapping 12-5 predefined 12-30 prompts for 12-18 referencing in callbacks 4-73

showing in Model Browser 9-9 type 12-26 unmasking 12-13 masked subsystems showing in Model Browser 9-9 Math Function block algebraic loops 2-24 mathematical symbols using in annotations 4-17 MATLAB terminating 3-22 MATLAB Fcn block simulation speed 10-41 Max step size parameter 10-12 maximum order of ode15s solver and stability 10-14 maximum step size 10-12 mdl files 3-9 Memory block simulation speed 10-41 memory issues 8-8 menus 3-5 M-file S-functions simulation speed 10-41 MinMax block zero crossings 2-23 mixed continuous and discrete systems 2-35 Model Browser 9-8 showing library links in 9-9 showing masked subsystems in 9-9 model callback parameters 4-71 Model Coverage Tool 14-19 block report key 14-27 commands 14-36 lookup table report key 14-28 report 14-24 simcovdemo 14-22

I-8

Index

model discretization configurable subystems 4-55 discretizing a model 4-50 overview 4-49 specifying the discretization method 4-52 starting the model discretizer 4-51 model file name, maximum size of 3-9 model files mdl file 3-9 model navigation commands 4-23 model parameters for version control 4-85 model verification blocks disabling 10-34 ModelCloseFcn block callback parameter 4-74 modeling equations 8-2 modeling strategies 8-8 models building 1-7 callback routines 4-71 creating 4-2 creating change histories for 4-83 editing 3-4 navigating 4-23 organizing and documenting 8-8 printing 3-12 properties of 4-79 running test cases 14-23 saving 3-9 selecting entire 4-4 tips for building 8-8 version control properties of 4-85 ModelVersion model parameter 4-86 ModelVersionFormat model parameter 4-86 ModifiedBy model parameter 4-85 ModifiedByFormat model parameter 4-85 ModifiedComment model parameter 4-86 ModifiedDate model parameter 4-85

ModifiedDateFormat model parameter 4-86 ModifiedHistory> model parameter 4-86

Monte Carlo analysis 10-43 mouse actions summary 3-19 MoveFcn block callback parameter 4-74 multirate systems example 2-31 Mux block changing number of input ports 1-11

N
NameChangeFcn block callback parameter 4-74

names blocks 5-16 copied blocks 5-4 New Library menu item 5-28 New menu item 4-2 normalized icon drawing coordinates 12-16 numerical differentiation formula 10-10 numerical integration 2-15

O
objects selecting more than one 4-3 selecting one 4-3 ode1 solver 10-9 ode113 solver advantages 10-10 hybrid systems 2-36 Memory block and simulation speed 10-41 ode15s solver advantages 10-10 and stiff problems 10-41 hybrid systems 2-36

I-9

Index

maximum order 10-14 Memory block and simulation speed 10-41 unstable simulation results 10-42 ode2 solver 10-9 ode23 solver 10-10 hybrid systems 2-35 ode23s solver advantages 10-10 maximum order 10-15 simulation accuracy 10-42 ode3 solver 10-9 ode4 solver 10-9 ode45 solver 10-10 hybrid systems 2-35 ode5 solver 10-9 Open menu item 3-4 Open System menu item 9-10 OpenFcn block callback parameter identifying blocks that contain 9-11 Open System menu item 9-12 purpose 4-74 opening Subsystem block 4-22 orientation of blocks 5-15 Outport block example 11-2 in subsystem 4-21 linearization 11-4 output additional 10-16 between trigger events 4-33 disabled subsystem 4-27 enable signal 4-29 options 10-15 saving to workspace 10-22 smoother 10-15

specifying for simulation 10-16 trajectories viewing 11-2 trigger signal 4-34 writing to file when written 10-6 writing to workspace 10-22 when written 10-6 output ports Enable block 4-29 Trigger block 4-34

P
PaperOrientation model parameter 3-14 PaperPosition model parameter 3-15 PaperPositionMode model parameter 3-15 PaperType model parameter 3-14

parameters block 5-7 setting values of 5-7 specifying simulation 1-13 tunable definition 2-8 Inline parameters option 10-30 Parameters menu item selecting solver 10-8 Parameters pane of Mask Editor 12-12 ParentCloseFcn block callback parameter 4-74 Paste menu item 5-4 performance comparing Simulink Accelerator to Simulink 14-10 Pixel icon drawing coordinates 12-17 ports block orientation 5-15 labeling in subsystem 4-24

I-10

Index

PostLoadFcn model callback parameter 4-72 PostSaveFcn block callback parameter 4-75 PostSaveFcn model callback parameter 4-72 PostScript files printing to 3-14 preferences 1-16 Preferences dialog box 1-17 PreLoadFcn model callback parameter 4-72 PreSaveFcn block callback parameter 4-74 PreSaveFcn model callback parameter 4-72 Print (Browser) menu item 9-10 print command 3-12 Print menu item 3-12 printing to PostScript file 3-14 Priority block parameter 5-19 produce additional output option 10-16 produce specified output only option 10-16 Product block algebraic loops 2-24 production hardware characteristics, specifying 10-35 propagation of signal labels 6-10 purely discrete systems 2-31

refine factor smoothing output 10-15 Relational Operator block zero crossings 2-23 relative tolerance definition 10-13 simulation accuracy 10-42 Relay block zero crossings 2-23 reset output of enabled subsystem 4-28 states of enabled subsystem 4-28 resizing blocks 5-15 return variables example 11-2 reversing direction of signal flow 8-3 rising trigger event 4-31 Rosenbrock formula 10-10 Rotate Block menu item 5-15 Runge-Kutta (2,3) pair 10-10 Runge-Kutta (4,5) formula 10-10 Runge-Kutta fourth-order formula 10-9 running a simulation 1-13

Q
Quit MATLAB menu item 3-22

S
sample model 1-7 sample time backpropagating 2-34 changing during simulation 2-30 colors 2-34 constant 2-34 continuous 2-29 discrete 2-29 fixed in minor time step 2-29 fundamental 10-11 inherited 2-30

R
Random Number block simulation speed 10-42 Real-Time Workshop and Simulink Accelerator 14-3 Redo menu item 3-6 reference blocks definition 5-28

I-11

Index

simulation speed 10-41 Sample Time Colors menu item 2-35 updating coloring 4-8 sampled data systems 2-28 Saturation block zero crossings 2-23 how used 2-21 Save As menu item 3-9 Save menu item 3-9 Save options area 10-22 save_system command breaking links 5-32 scalar expansion 6-9 Scope block example of simple continuous system 8-4 example of simple model 11-2 Select All menu item 4-4 Set Font dialog box 5-17 set_param command breaking link 5-32 controlling model execution 14-9 running a simulation 10-4, 10-43 setting simulation mode 14-9 setting breakpoints 13-22 Shampine, L. F. 10-11 Show Browser menu item 9-10 Show Name menu item 5-18 show output port Enable block 4-29 Trigger block 4-34 Show Propagated Signals menu item 6-12 showing block names 5-18 Sign block zero crossings 2-23 Signal 6-29 Signal Builder snap grid 6-27

Signal Builder dialog box 6-21 Signal Builder time range about 6-29 changing 6-29 signal buses 6-6 signal flow through blocks 5-15 signal groups 6-20 activating 6-30 creating a custom waveform in 6-24 creating a set of 6-20 creating and deleting 6-23 creating signals in 6-23 cutting and pasting 6-24 discrete 6-33 editing 6-21 exporting to workspace 6-30 final values 6-31 hiding waveforms 6-23 moving 6-23 renaming 6-23 renaming signals in 6-30 running all 6-30 simulating with 6-30 specifying final values for 6-31 specifying sample time of 6-33 time range of 6-29 signal labels changing font 6-18 copying 6-18 creating 6-18 deleting 6-18 editing 6-18 moving 6-18 propagation 6-10 using to document models 8-8 signal propagation 6-3 signal properties

I-12

Index

setting 6-10 Signal Properties dialog box 6-11 signals composite 6-4 labeling 6-17 labels 6-18 names 6-17 propagation 6-10 reversing direction of flow 8-3 setting properties 6-11 showing propagated 6-12 storage class of 6-13 virtual 6-3 sim command comparing performance 14-10 simulating an accelerated model 14-10 syntax 10-43
simcovdemo

Model Coverage Tool 14-22 simulation accuracy 10-42 checking status of 10-43 command line 10-43 displaying information about algebraic loops 13-30 block execution order 13-32 block I/O 13-28 debug settings 13-35 integration 13-31 nonvirtual blocks 13-33 nonvirtual systems 13-33 system states 13-31 zero crossings 13-34 execution phase 2-15 parameters specifying 10-37 running 1-13

running incrementally 13-15 running nonstop 13-19 speed 10-41 stepping by breakpoints 13-22 stepping by time steps 13-18 unstable results 10-42 Simulation Diagnostic Viewer 10-37 Simulation Diagnostics dialog box 10-37 simulation errors diagnosing 10-37 Simulation Options dialog box 6-31 Simulation Parameters dialog box Diagnostics pane 10-25 increasing Simulink Accelerator performance 14-6 Solver pane 10-8 Workspace I/O pane 10-18 Simulation Parameters menu item 1-13 simulation profile 14-16 simulation time compared to clock time 10-8 writing to workspace 10-22 Simulink ending session 3-22 icon 3-2 menus 3-5 starting 3-2 terminating 3-22 windows and screen resolution 3-7 Simulink Accelerator blocks whose performance is not improved by 14-7 description 14-3 how to run 14-4 using with Simulink debugger 14-8 Simulink block library See block libraries

I-13

Index

simulink command

ode23 10-10 ode23s

starting Simulink 3-2 Simulink Data Explorer 7-27 Simulink Library Browser 3-2 Simulink Performance Tools option and Simulink Accelerator 14-3 Model Coverage Tool 14-19 Simulink profiler 14-13 Simulink preferences 1-16 Simulink profiler purpose 14-13 Simulink status bar 3-7 size of block changing 5-15 sldebug command starting the Simulink debugger 13-13 snap grid, Signal Builder’s 6-27 Solver pane Simulation Parameters dialog box 10-8 solvers default 10-9 discrete 10-9 zero-crossing detection 10-11 fixed-step definition 2-18 list 10-9 ode1 10-9
ode113

advantages 10-10 and simulation speed 10-41
ode15s

advantages 10-10 and simulation speed 10-41 and stiff problems 10-41 maximum order 10-14 simulation accuracy 10-42 ode2 10-9

advantages 10-10 maximum order 10-15 simulation accuracy 10-42 ode3 10-9 ode4 10-9 ode45 10-10 ode5 10-9 Source Control menu item 4-77 speed of simulation 10-41 stairs function 2-31 Start menu item 8-3 start time 10-8 StartFcn block callback parameter 4-75 StartFcn model callback parameter 4-72 starting Simulink 3-2 starting the model discretizer 4-51 Stateflow and if-else control flow diagrams 4-46 and Simulink Accelerator performance 14-6 and switch control flow diagrams 4-46 and While subsystems 4-46 compared to control flow diagrams 4-45 states between trigger events 4-33 loading initial 10-25 saving final 10-24 when enabling 4-28 writing to workspace 10-22 State-Space block algebraic loops 2-24 status checking simulation 10-43 status bar 3-7 Step block zero crossings 2-23

I-14

Index

step size 10-12 simulation speed 10-41 stiff problems 10-11 stiff systems simulation speed 10-41 stop time 10-8 StopFcn block callback parameter 4-75 StopFcn model callback parameter 4-72 storage class of signals displaying 6-13 selecting 6-13 Subsystem block adding to create subsystem 4-20 opening 4-22 zero crossings 2-24 Subsystem Examples block library 8-6 subsystem ports labeling 4-24 subsystems controlling access to 4-24 creating 4-20 displaying parent of 4-23 labeling ports 4-24 model hierarchy 8-8 opening 4-23 triggered and enabled 4-35 underlying blocks 4-22 undoing creation of 4-22 Sum block algebraic loops 2-24 summary of mouse and keyboard actions 3-19 Switch block zero crossings 2-24 switch control flow diagram 4-40 and Stateflow 4-46 SwitchCase block adding cases 4-40

connecting to Action subsystem 4-40 data input 4-40

T
terminating MATLAB 3-22 terminating Simulink 3-22 terminating Simulink session 3-22 TeX commands using in annotations 4-17 tic command comparing performance 14-10 time interval simulation speed 10-41 time range of a Signal Builder block 6-29 tips for building models 8-8 To Workspace block example 11-3 toc command comparing performance 14-10 Transfer Fcn block algebraic loops 2-24 example 8-4 Transport Delay block linearization 11-5 Trigger block creating triggered subsystem 4-32 outputting trigger signal 4-34 showing output port 4-34 triggered and enabled subsystems 4-35 triggered subsystems 4-31 triggers control signal outputting 4-34 either 4-31 events 4-31

I-15

Index

falling 4-31 input 4-31 rising 4-31 type parameter 4-33 tunable parameters definition 2-8 Inline parameters option 10-30 typographical conventions (table) xxii

viewing output trajectories 11-2 virtual blocks 5-2 virtual signals 6-3

W
web command

masked block help 12-27
while control flow diagram 4-41

U
Undo menu item 3-6 UndoDeleteFcn block callback parameter 4-75 Unmask button on Mask Editor 12-13 unstable simulation results 10-42 Update Diagram menu item fixing bad link 5-30 out-of-date reference block 5-31 recoloring model 4-8 updating a diagram programatically 10-43 URL specification in block help 12-27 user specifying current 4-77 user data 7-29 UserData 7-29 UserDataPersistent 7-29 user-written S-functions increasing Simulink Accelerator performance 14-6

While Iterator block changing to do-while 4-42 condition input 4-42 in subsystem 4-42 initial condition input 4-42 iterator number output 4-42 While subsystem and Stateflow 4-46 window reuse 4-23 workspace loading from 10-18 mask 12-25 saving to 10-22 writing to simulation terminated or suspended 10-6 Workspace I/O pane Simulation Parameters dialog box 10-18

Z
zero crossings disabled by non-double data types 7-6 Saturation block 2-21 zero-crossing detection enabling globally 10-33 enabling selectively 10-33 zero-crossing slope method 4-27 Zero-Pole block

V
vector length checking 2-13 version control model parameters 4-85 vertices moving 4-14

I-16

Index

algebraic loops 2-24 zooming block diagrams 3-7

I-17

Index

I-18

			

		

		
		
			

Podobne pliki
	Using Simulink v3 (ang)
	tutorial3 Using Matlab in linear algebra (ang)
	Creating a Footprint Map Using AutoCAD tutorial (ang)
	Simulation of MIMO Antenna Systems in Simulink (ang)
	Simulink Tutorial (ang)
	Simulink a Graphical Tool for Dynamic System Simulation (ang)
	Airbus - 3D Modelling Rules For Catia v5 (ang)
	Catia v5 Tutorial Advanced - tworzenie konfiguracji (ang)
	3D modeling in AutoCad - tutorial (ang)
	Rendering and Materials (ang)

Ostatnio dodane
	Skrypt - Zadania miarowe
	Skrypt - Wzajemne Polożenie dwoch prostych
	Skrypt - Rzeczywista dlugosc odcinka
	Skrypt - Przebieg Prostej
	Skrypt - Odwzorowanie plaszczyzny
	Skrypt - Odwzorowanie elementow geometrycznych
	Skrypt - Elementy wspólne
	Skrypt - Elementy równoległe i prostopadłe
	Skrypt - Elementy przynależne
	katowniki nierownoramienne

		

		
		

	

	

	
		© 2009-2012 mechanics.pl polityka prywatności sitemap

	

	
	
	
[image: statystyka]

[image: statystyki]

