Przeglądaj wersję html pliku:

### tutorial6 Linear programming with Matlab (ang)


      
  
Edward Neuman Department of Mathematics Southern Illinois University at Carbondale edneuman@siu.edu

This tutorial is devoted to the discussion of computational tools that are of interest in linear programming (LP). MATLAB powerful tools for computations with vectors and matrices make this package well suited for solving typical problems of linear programming. Topics discussed in this tutorial include the basic feasible solutions, extreme points and extreme directions of the constraint set, geometric solution of the linear programming problem, the Two-Phase Method, the Dual Simplex Algorithm, addition of a constraint and Gomory's cutting plane algorithm.

     !  

Function abs all any axis break clc convhull diff disp eps eye find FontSize gca get grid hold inf

Description Absolute value True if all elements of a vector are nonzero True if any element of a vector is nonzero Control axis scaling and appearance Terminate execution of for or while loop Clear Command Window Convex hull Difference and approximate derivative Display array Floating point relative accuracy Identity matrix Find indices of nonzero of nonzero elements Size of a font Get handle to current axis Get object properties Grid lines Hold current graph Infinity

2

intersect isempty length LineStyle LineWidth max min msgbox nchoosek patch pause plot questdlg return set size sprintf sqrt strcmp sum title union varargin varargout warning off xlabel ylabel zeros

Set intersection True for empty matrix Length of vector Style of a line Width of a line Largest component Smallest component Message box Binomial coefficient or all combinations Create patch Wait for user response Linear plot Question dialog box Return to invoking function Set object properties Size of matrix Write formatted data to string Square root Compare strings Sum of elements Graph title Set union Variable length input argument list Variable length output argument list Suppresses all subsequent warning messages X-axis label Y-axis label Zeros array

To learn more about a particular MATLAB function type help functionname in the Command Window and next press the Enter key.



"

The following symbols will be used throughout the sequel. • • • • •

column vector. Lower case letters will denote members of this space. m  n – collection of all real matrices with m rows and n columns. Upper case letters will denote members of this space. T – operator of transposition. In MATLAB the single quote operator ' is used to create transposition of a real vector or a real matrix. xTy – the inner product (dot product) of x and y. x  0 – nonnegative vector. All components of x are greater than or equal to zero.

n – n-dimensional Euclidean vector space. Each member of this space is an n-dimensional

3

#

\$% &'    

Some MATLAB functions that are presented in the subsequent sections of this tutorial make calls to functions named ver, delcols, MRT, MRTD and Br. These functions should be saved in the directory holding other m-files that are used in this tutorial.
function e = vr(m,i) % The ith coordinate vector e in the m-dimensional Euclidean space. e = zeros(m,1); e(i) = 1;

function d = delcols(d) % Delete duplicated columns of the matrix d. d = n = j = for union(d',d','rows')'; size(d,2); []; k =1:n c = d(:,k); for l=k+1:n if norm(c - d(:,l),'inf') <= 100*eps j = [j l]; end end

end if ~isempty(j) j = sort(j); d(:,j) = [ ]; end

First line of code in the body of function delcols is borrowed from the MATLAB's help file. Two vectors are regarded as duplicated if the corresponding entries differ by more than 100 times the machine epsilon. In MATLAB this number is denoted by eps and is approximately equal to
format long eps ans = 2.220446049250313e-016 format short

In order to display more digits we have changed the default format (short) to long. To learn more about available formats in MATLAB type help format in the Command Window.

4

function [row, mi] = MRT(a, b) % % % % The Minimum Ratio Test (MRT) performed on vectors a and b. Output parameters: row – index of the pivot row mi – value of the smallest ratio.

m = length(a); c = 1:m; a = a(:); b = b(:); l = c(b > 0); [mi, row] = min(a(l)./b(l)); row = l(row);

function col = MRTD(a, b) % % % % The Maximum Ratio Test performed on vectors a and b. This function is called from within the function dsimplex. Output parameter: col - index of the pivot column.

m = length(a); c = 1:m; a = a(:); b = b(:); l = c(b < 0); [mi, col] = max(a(l)./b(l)); col = l(col);

function [m, j] = Br(d) % % % % % % Implementation of the Bland's rule applied to the array d. This function is called from within the following functions: simplex2p, dsimplex, addconstr, simplex and cpa. Output parameters: m - first negative number in the array d j - index of the entry m.

ind = find(d < 0); if ~isempty(ind) j = ind(1); m = d(j); else m = []; j = []; end

5



   ( 

The standard form of the linear programming problem is formulated as follows. Given matrix A  m  n and two vectors c  n and b  m, b  0, find a vector x  n such that min z = cTx Subject to Ax = b x0 Function vert = feassol(A, b) computes all basic feasible solutions, if any, to the system of constraints in standard form.
function vert = feassol(A, b) % Basic feasible solutions vert to the system of constraints % Ax = b, x >= 0.

% They are stored in columns of the matrix vert. [m, n] = size(A); warning off b = b(:); vert = []; if (n >= m) t = nchoosek(1:n,m); nv = nchoosek(n,m); for i=1:nv y = zeros(n,1); x = A(:,t(i,:))\b; if all(x >= 0 & (x ~= inf & x ~= -inf)) y(t(i,:)) = x; vert = [vert y]; end end else error('Number of equations is greater than the number of variables.') end if ~isempty(vert) vert = delcols(vert); else vert = []; end

To illustrate functionality of this code consider the following system of constraints (see , Example 3.2, pp. 85-87):
x1 + x2  6 x2  3

6 x1, x2  0. To put this system in standard form two slack variables x3 and x4 are added. The constraint matrix A and the right hand sides b are A = [1 1 1 0; 0 1 0 1]; b = [6; 3]; vert = feassol(A, b) vert = 0 0 6 3

0 3 3 0

3 3 0 0

6 0 0 3

To obtain values of the legitimate variables x1 and x2 it suffices to extract rows one and two of the matrix vert
vert = vert(1:2, :) vert = 0 0

0 3

3 3

6 0

)

*& +   ! & !      

Problem discussed in this section is formulated as follows. Given a polyhedral set X = {x: Ax  b or Ax  b, x  0} find all extreme points t of X. If X is unbounded, then in addition to finding the extreme points t its extreme directions d should be determined as well. To this end we will assume that the constraint set does not involve the equality constraints. If the LP problem has the equality constraint, then one can replace it by two inequality constraints. This is based on the following trivial observation: the equality a = b is equivalent to the system of inequalities a  b and a  b. Knowledge of the extreme points and extreme directions of the polyhedral set X is critical for a full mathematical description of this set. If set X is bounded, than a convex combination of its extreme points gives a point in this set. For the unbounded sets, however, a convex combination of its extreme points and a linear combination, with positive coefficients, of its extreme directions gives a point in set X. For more details, the interested reader is referred to , Chapter 2. Extreme points of the set in question can be computed using function extrpts
function vert = extrpts(A, rel, b) % Extreme points vert of the polyhedral set % X = {x: Ax <= b or Ax >= b, x >= 0}.

% Inequality signs are stored in the string rel, e.g.,

7

% rel = '<<>' stands for <= , <= , and >= , respectively. [m, n] = size(A); nlv = n; for i=1:m if(rel(i) == '>') A = [A -vr(m,i)]; else A = [A vr(m,i)]; end if b(i) < 0 A(i,:) = - A(i,:); b(i) = -b(i); end end warning off [m, n]= size(A); b = b(:); vert = [ ]; if (n >= m) t = nchoosek(1:n,m); nv = nchoosek(n,m); for i=1:nv y = zeros(n,1); x = A(:,t(i,:))\b; if all(x >= 0 & (x ~= inf & x ~= -inf)) y(t(i,:)) = x; vert = [vert y]; end end else error('Number of equations is greater than the number of variables') end vert = delcols(vert); vert = vert(1:nlv,:);

Consider the polyhedral set X given by the inequalities -x1 + x2  1 -0.1x1 + x2  2 x1, x2  0 To compute its extreme points we define
A = [-1 1; -0.1 1]; rel = '<<'; b = [1; 2];

and next run the m-file extrpts
vert = extrpts(A, rel, b)

8

vert = 0 0 0 1.0000 1.1111 2.1111

Recall that the extreme points are stored in columns of the matrix vert. Extreme directions, if any, of the polyhedral set X can be computed using function extrdir
function d = extrdir(A, rel, b) % Extreme directions d of the polyhedral set % X = {x: Ax <= b, or Ax >= b, x >= 0}.

% Matrix A must be of the full row rank. [m, n] = size(A); n1 = n; for i=1:m if(rel(i) == '>') A = [A -vr(m,i)]; else A = [A vr(m,i)]; end end [m, n] = size(A); A = [A;ones(1,n)]; b = [zeros(m,1);1]; d = feassol(A,b); if ~isempty(d) d1 = d(1:n1,:); d = delcols(d1); s = sum(d); for i=1:n1 d(:,i) = d(:,i)/s(i); end else d = []; end

Function extrdir returns the empty set operator [ ] for bounded polyhedral sets. We will test this function using the polyhedral set that is defined in the last example of this section. We have
d = extrdir(A, rel, b) d = 1.0000 0 0.9091 0.0909

Again, the directions in question are stored in columns of the output matrix d.

9

%    +( '

A solution to the LP problem with two legitimate variables x1 and x2 can be found geometrically in three steps. First, the feasible region described by the constraint system Ax  b or Ax  b with x  0 is drawn. Next, a direction of the level line z = c1x1 + c2x2 is determined. Finally moving the level line one can find easily vertex (extreme point) of the feasible region where the minimum or maximum value of z is attained or conclude that the objective function is unbounded. For more details see, e.g., , Chapter 2 and , Chapter 1.

Function drawfr implements two initial steps of this method
function drawfr(c, A, rel, b)

% Graphs of the feasible region and the line level % of the LP problem with two legitimate variables % % min (max)z = c*x % Subject to Ax <= b (or Ax >= b), % x >= 0 clc [m, n] = size(A); if n ~= 2 str = 'Number of the legitimate variables must be equal to 2'; msgbox(str,'Error Window','error') return end vert = extrpts(A,b,rel); if isempty(vert) disp(sprintf('\n Empty feasible region')) return end vert = vert(1:2,:); vert = delcols(vert); d = extrdir(A,b,rel); if ~isempty(d) msgbox('Unbounded feasible region','Warning Window','warn') disp(sprintf('\n Extreme direction(s) of the constraint set')) d disp(sprintf('\n Extreme points of the constraint set')) vert return end t1 = vert(1,:); t2 = vert(2,:); z = convhull(t1,t2); hold on patch(t1(z),t2(z),'r') h = .25; mit1 = min(t1)-h; mat1 = max(t1)+h; mit2 = min(t2)-h;

10

mat2 = max(t2)+h; if c(1) ~= 0 & c(2) ~= 0 sl = -c(1)/c(2); if sl > 0 z = c(:)'*[mit1;mit2]; a1 = [mit1 mat1]; b1 = [mit2 (z-c(1)*mat1)/c(2)]; else z = c(:)'*[mat1;mit2]; a1 = [mit1 mat1]; b1 = [(z-c(1)*mit1)/c(2) mit2]; end elseif c(1) == 0 & c(2) ~= 0 z = 0; a1 = [mit1 mat1]; b1 = [0,0]; else z = 0; a1 = [0 0]; b1 = [mit2 mat2]; end h = plot(a1,b1); set(h,'linestyle','--') set(h,'linewidth',2) str = 'Feasible region and a level line with the objective value = '; title([str,num2str(z)]) axis([mit1 mat1 mit2 mat2]) h = get(gca,'Title'); set(h,'FontSize',11) xlabel('x_1') h = get(gca,'xlabel'); set(h,'FontSize',11) ylabel('x_2') h = get(gca,'ylabel'); set(h,'FontSize',11) grid hold off

To test this function consider the LP problem with five constraints
c = [-3 5]; A = [-1 1;1 1;1 1;3 –1;1 –3]; rel = '<><<<'; b = [1;1;5;7;1];

Graphs of the feasible region and the level line are shown below
drawfr(c, A, rel, b)

11

Feasible region and a level line with the objective value = -0.5
3

2.5

2

x2

1.5

1

0.5

0 0 0.5 1 1.5 2 2.5 3

x1

Let us note that for the minimization problem the optimal solution occurs at  2.5 x=  0.5 while the maximum of the objective function is attained at  2 x=   3 Next LP problem is defined as follows
c = [1 1]; A = [-1 1;-0.1 1]; rel = '<<'; b = [1;2];

Invoking function drawfr we obtain
drawfr(c, A, rel, b)

12

Extreme direction(s) of the constraint set d = 1.0000 0 0.9091 0.0909

Extreme points of the constraint set vert = 0 0 1.1111 0 1.0000 2.1111

Unbounded feasible region

Graph of the feasible region is not displayed. Extreme directions and the extreme points are shown above. Also, a warrning message is generated.



 , !

The Two-Phase Method is one of the basic computational tools used in linear programming. An implementation of this method presented in this section takes advantage of all features of this method. The LP problems that can be solved are either the minimization or maximization problems. Optimal solution is sought over a polyhedral set that is described by the inequality and/or equality constraints together with the nonnegativity constraints imposed on the legitimate variables. Function simplex2p displays messages about the LP problem to be solved. These include: • • • information about uniqueness of the optimal solution information about unboundedness of the objective function, if any information about empty feasible region

In addition to these features some built-in mechanisms allow to solve the LP problems whose constraint systems are redundant. Also, Bland's Rule to prevent cycling is used. For details, see , p. 169 and p. 174. During the execution of function simplex2p a user has an option to monitor progress of computations by clicking on the Yes button in the message windows.

13

function

simplex2p(type, c, A, rel, b)

% The Two-Phase Method for solving the LP problem % % % % % % % % % min(or max) z = c*x Subject to Ax rel b x >= 0 The input parameter type holds information about type of the LP problem to be solved. For the minimization problem type = 'min' and for the maximization problem type = 'max'. The input parameter rel is a string holding the relation signs. For instance, if rel = '<=>', then the constraint system consists of one inequality <=, one equation, and one inequality >=.

clc if (type == 'min') mm = 0; else mm = 1; c = -c; end b = b(:); c = c(:)'; [m, n] = size(A); n1 = n; les = 0; neq = 0; red = 0; if length(c) < n c = [c zeros(1,n-length(c))]; end for i=1:m if(rel(i) == '<') A = [A vr(m,i)]; les = les + 1; elseif(rel(i) == '>') A = [A -vr(m,i)]; else neq = neq + 1; end end ncol = length(A); if les == m c = [c zeros(1,ncol-length(c))]; A = [A;c]; A = [A [b;0]]; [subs, A, z, p1] = loop(A, n1+1:ncol, mm, 1, 1); disp(' End of Phase 1') disp(' *********************************') else A = [A eye(m) b]; if m > 1 w = -sum(A(1:m,1:ncol)); else w = -A(1,1:ncol); end

14

c = [c zeros(1,length(A)-length(c))]; A = [A;c]; A = [A;[w zeros(1,m) -sum(b)]]; subs = ncol+1:ncol+m; av = subs; [subs, A, z, p1] = loop(A, subs, mm, 2, 1); if p1 == 'y' disp(' End of Phase 1') disp(' *********************************') end nc = ncol + m + 1; x = zeros(nc-1,1); x(subs) = A(1:m,nc); xa = x(av); com = intersect(subs,av); if (any(xa) ~= 0) disp(sprintf('\n\n Empty feasible region\n')) return else if ~isempty(com) red = 1; end end A = A(1:m+1,1:nc); A =[A(1:m+1,1:ncol) A(1:m+1,nc)]; [subs, A, z, p1] = loop(A, subs, mm, 1, 2); if p1 == 'y' disp(' End of Phase 2') disp(' *********************************') end end if (z == inf | z == -inf) return end [m, n] = size(A); x = zeros(n,1); x(subs) = A(1:m-1,n); x = x(1:n1); if mm == 0 z = -A(m,n); else z = A(m,n); end disp(sprintf('\n\n Problem has a finite optimal solution\n')) disp(sprintf('\n Values of the legitimate variables:\n')) for i=1:n1 disp(sprintf(' x(%d)= %f ',i,x(i))) end disp(sprintf('\n Objective value at the optimal point:\n')) disp(sprintf(' z= %f',z)) t = find(A(m,1:n-1) == 0); if length(t) > m-1 str = 'Problem has infinitely many solutions'; msgbox(str,'Warning Window','warn') end if red == 1 disp(sprintf('\n Constraint system is redundant\n\n'))

15

end

function [subs, A, z, p1]= loop(A, subs, mm, k, ph) % Main loop of the simplex primal algorithm. % Bland's rule to prevente cycling is used. tbn = 0; str1 = 'Would you like to monitor the progress of Phase 1?'; str2 = 'Would you like to monitor the progress of Phase 2?'; if ph == 1 str = str1; else str = str2; end question_ans = questdlg(str,'Make a choice Window','Yes','No','No'); if strcmp(question_ans,'Yes') p1 = 'y'; end if p1 == 'y' & ph == 1 disp(sprintf('\n\n Initial tableau')) A disp(sprintf(' Press any key to continue ...\n\n')) pause end if p1 == 'y' & ph == 2 tbn = 1; disp(sprintf('\n\n Tableau %g',tbn)) A disp(sprintf(' Press any key to continue ...\n\n')) pause end [m, n] = size(A); [mi, col] = Br(A(m,1:n-1)); while ~isempty(mi) & mi < 0 & abs(mi) > eps t = A(1:m-k,col); if all(t <= 0) if mm == 0 z = -inf; else z = inf; end disp(sprintf('\n Unbounded optimal solution with z= %s\n',z)) return end [row, small] = MRT(A(1:m-k,n),A(1:m-k,col)); if ~isempty(row) if abs(small) <= 100*eps & k == 1 [s,col] = Br(A(m,1:n-1)); end if p1 == 'y' disp(sprintf(' pivot row-> %g pivot column-> %g',... row,col)) end

16

A(row,:)= A(row,:)/A(row,col); subs(row) = col; for i = 1:m if i ~= row A(i,:)= A(i,:)-A(i,col)*A(row,:); end end [mi, col] = Br(A(m,1:n-1)); end tbn = tbn + 1; if p1 == 'y' disp(sprintf('\n\n Tableau %g',tbn)) A disp(sprintf(' Press any key to continue ...\n\n')) pause end end z = A(m,n);

MATLAB subfunction loop is included in the m-file simplex2p. It implements the main loop of the simplex algorithm. Organization of the tableaux generated by function simplex2p is the same as the one presented in . We will now test this function on five LP problems. Let
type = 'min'; c = [-3 4]; A = [1 1;2 3]; rel = '<>'; b = [4; 18];

One can easily check, either by drawing the graph of the constraint set or running function drawfr on these data, that this problem has an empty feasible region.
simplex2p(type, c, A, rel, b)

Initial tableau A = 1 2 -3 -3 1 3 4 -4 1 0 0 -1 0 -1 0 1 1 0 0 0 0 1 0 0 4 18 0 -22

Press any key to continue ...

17

pivot row-> 1

pivot column-> 1

Tableau 1 A = 1 0 0 0 1 1 7 -1 1 -2 3 2 0 -1 0 1 1 -2 3 3 0 1 0 0 4 10 12 -10

Press any key to continue ...

pivot row-> 1

pivot column-> 2

Tableau 2 A = 1 -1 -7 1 1 0 0 0 1 -3 -4 3 0 -1 0 1 1 -3 -4 4 0 1 0 0 4 6 -16 -6

Press any key to continue ...

End of Phase 1 *********************************

Empty feasible region

Next LP problem has an unbounded objective function. Let
type = 'max'; c = [3 2 1]; A = [2 –3 2;-1 1 1]; rel = '<<'; b = [3;55];

Running function simplex2p we obtain
simplex2p(type, c, A, rel, b)

18

Initial tableau A = 2 -1 -3 -3 1 -2 2 1 -1 1 0 0 0 1 0 3 55 0

Press any key to continue ...

pivot row-> 1

pivot column-> 1

Tableau 1 A = 1.0000 0 0 -1.5000 -0.5000 -6.5000 1.0000 2.0000 2.0000 0.5000 0.5000 1.5000 0 1.0000 0 1.5000 56.5000 4.5000

Press any key to continue ...

Unbounded optimal solution with z= Inf End of Phase 1 *********************************

In this example we will deal with the LP problem that is described by a system of two equations with seven variables
type = 'min'; c = [3 4 6 7 1 0 0]; A = [2 –1 1 6 –5 –1 0;1 1 2 1 2 0 –1]; rel = '=='; b = [6;3];

simplex2p(type, c, A, rel, b)

19

Initial tableau A = 2 1 3 -3 -1 1 4 0 1 2 6 -3 6 1 7 -7 -5 2 1 3 -1 0 0 1 0 -1 0 1 1 0 0 0 0 1 0 0 6 3 0 -9

Press any key to continue ...

pivot row-> 1

pivot column-> 1

Tableau 1 A = Columns 1 through 7 1.0000 0 0 0 -0.5000 1.5000 5.5000 -1.5000 0.5000 1.5000 4.5000 -1.5000 3.0000 -2.0000 -2.0000 2.0000 -2.5000 4.5000 8.5000 -4.5000 -0.5000 0.5000 1.5000 -0.5000 0 -1.0000 0 1.0000

Columns 8 through 10 0.5000 -0.5000 -1.5000 1.5000 0 1.0000 0 0 3.0000 0 -9.0000 0

Press any key to continue ...

pivot row-> 2

pivot column-> 2

20

Tableau 2 A = Columns 1 through 7 1.0000 0 0 0 0 1.0000 0 0 1.0000 1.0000 -1.0000 0 2.3333 -1.3333 5.3333 0 -1.0000 3.0000 -8.0000 0 -0.3333 0.3333 -0.3333 0 -0.3333 -0.6667 3.6667 0

Columns 8 through 10 0.3333 -0.3333 0.3333 1.0000 0.3333 0.6667 -3.6667 1.0000 3.0000 0 -9.0000 0

Press any key to continue ...

End of Phase 1 *********************************

Tableau 1 A = Columns 1 through 7 1.0000 0 0 Column 8 3.0000 0 -9.0000 Press any key to continue ... 0 1.0000 0 1.0000 1.0000 -1.0000 2.3333 -1.3333 5.3333 -1.0000 3.0000 -8.0000 -0.3333 0.3333 -0.3333 -0.3333 -0.6667 3.6667

pivot row-> 2

pivot column-> 3

21

Tableau 2 A = Columns 1 through 7 1.0000 0 0 Column 8 3.0000 0 -9.0000 Press any key to continue ... -1.0000 1.0000 1.0000 0 1.0000 0 3.6667 -1.3333 4.0000 -4.0000 3.0000 -5.0000 -0.6667 0.3333 0.0000 0.3333 -0.6667 3.0000

pivot row-> 2

pivot column-> 5

Tableau 3 A = Columns 1 through 7 1.0000 0 0 Column 8 3.0000 0 -9.0000 Press any key to continue ... 0.3333 0.3333 2.6667 1.3333 0.3333 1.6667 1.8889 -0.4444 1.7778 0 1.0000 0 -0.2222 0.1111 0.5556 -0.5556 -0.2222 1.8889

End of Phase 2 *********************************

Problem has a finite optimal solution

Values of the legitimate variables: x(1)= x(2)= x(3)= x(4)= x(5)= x(6)= x(7)= 3.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

22

Objective value at the optimal point: z= 9.000000

The constraint system of the following LP problem
type = 'min'; c = [-1 2 –3]; A = [1 1 1;-1 1 2;0 2 3;0 0 1]; rel = '===<'; b = [6 4 10 2];

is redundant. Function simplex2p generates the following tableaux
simplex2p(type, c, A, rel, b)

Initial tableau A = 1 -1 0 0 -1 0 1 1 2 0 2 -4 1 2 3 1 -3 -7 0 0 0 1 0 -1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 6 4 10 2 0 -22

Press any key to continue ...

pivot row-> 2

pivot column-> 2

Tableau 1 A = 2 -1 2 0 1 -4 0 1 0 0 0 0 -1 2 -1 1 -7 1 0 0 0 1 0 -1 1 0 0 0 0 0 -1 1 -2 0 -2 4 0 0 1 0 0 0 0 0 0 1 0 0 2 4 2 2 -8 -6

Press any key to continue ...

pivot row-> 1

pivot column-> 1

23

Tableau 2 A = Columns 1 through 7 1.0000 0 0 0 0 0 0 1.0000 0 0 0 0 -0.5000 1.5000 0 1.0000 -6.5000 -1.0000 0 0 0 1.0000 0 -1.0000 0.5000 0.5000 -1.0000 0 -0.5000 2.0000 -0.5000 0.5000 -1.0000 0 -1.5000 2.0000 0 0 1.0000 0 0 0

Columns 8 through 9 0 0 0 1.0000 0 0 1.0000 5.0000 0 2.0000 -9.0000 -2.0000

Press any key to continue ...

pivot row-> 4

pivot column-> 3

Tableau 3 A = Columns 1 through 7 1.0000 0 0 0 0 0 0 1.0000 0 0 0 0 0 0 0 1.0000 0 0 0.5000 -1.5000 0 1.0000 6.5000 0 0.5000 0.5000 -1.0000 0 -0.5000 2.0000 -0.5000 0.5000 -1.0000 0 -1.5000 2.0000 0 0 1.0000 0 0 0

Columns 8 through 9 0.5000 -1.5000 0 1.0000 6.5000 1.0000 2.0000 2.0000 0 2.0000 4.0000 0

Press any key to continue ...

End of Phase 1 *********************************

24

Tableau 1 A = 1.0000 0 0 0 0 0 1.0000 0 0 0 0 0 0 1.0000 0 0.5000 -1.5000 0 1.0000 6.5000 2.0000 2.0000 0 2.0000 4.0000

Press any key to continue ...

End of Phase 2 *********************************

Problem has a finite optimal solution

Values of the legitimate variables: x(1)= 2.000000 x(2)= 2.000000 x(3)= 2.000000 Objective value at the optimal point: z= -4.000000 Constraint system is redundant

If the LP problem is degenerated, then there is a chance that the method under discussion would never terminate. In order to avoid cycling the Bland's rule is implemented in the body of the function loop. The following LP problem
type = 'min'; c = [-3/4 150 –1/50 6]; A = [1/4 –60 –1/25 9; 1/2 -90 –1/50 3; 0 0 1 0]; rel = '<<<'; b = [0 0 1];

is discussed in , pp. 136-138. Function simplex2p generates the following tableaux
simplex2p(type, c, A, rel, b)

25

Initial tableau A = Columns 1 through 7 0.2500 0.5000 0 -0.7500 Column 8 0 0 1.0000 0 Press any key to continue ... -60.0000 -90.0000 0 150.0000 -0.0400 -0.0200 1.0000 -0.0200 9.0000 3.0000 0 6.0000 1.0000 0 0 0 0 1.0000 0 0 0 0 1.0000 0

pivot row-> 1

pivot column-> 1

Tableau 1 A = Columns 1 through 7 1.0000 -240.0000 0 30.0000 0 0 0 -30.0000 Column 8 0 0 1.0000 0 Press any key to continue ... -0.1600 0.0600 1.0000 -0.1400 36.0000 -15.0000 0 33.0000 4.0000 -2.0000 0 3.0000 0 1.0000 0 0 0 0 1.0000 0

pivot row-> 2

pivot column-> 2

26

Tableau 2 A = Columns 1 through 7 1.0000 0 0 0 Column 8 0 0 1.0000 0 Press any key to continue ... 0 1.0000 0 0 0.3200 0.0020 1.0000 -0.0800 -84.0000 -0.5000 0 18.0000 -12.0000 -0.0667 0 1.0000 8.0000 0.0333 0 1.0000 0 0 1.0000 0

pivot row-> 1

pivot column-> 3

Tableau 3 A = Columns 1 through 7 3.1250 -0.0063 -3.1250 0.2500 Column 8 0 0 1.0000 0 Press any key to continue ... 0 1.0000 0 0 1.0000 -262.5000 0 0.0250 0 262.5000 0 -3.0000 -37.5000 0.0083 37.5000 -2.0000 25.0000 -0.0167 -25.0000 3.0000 0 0 1.0000 0

pivot row-> 2

pivot column-> 4

27

Tableau 4 A = 1.0e+004 * Columns 1 through 7 -0.0062 -0.0000 0.0062 -0.0000 Column 8 0 0 0.0001 0 Press any key to continue ... 1.0500 0.0040 -1.0500 0.0120 0.0001 0 0 0 0 0.0001 0 0 0.0050 0.0000 -0.0050 -0.0001 -0.0150 -0.0001 0.0150 0.0001 0 0 0.0001 0

pivot row-> 3

pivot column-> 1

Tableau 5 A = Columns 1 through 7 0 0 0 -2.0000 1.0000 -168.0000 0 36.0000 Column 8 1.0000 0.0040 0.0160 0.0080 Press any key to continue ... 1.0000 0 0 0 0 1.0000 0 0 0 0.1333 -0.8000 -1.4000 0 -0.0667 2.4000 2.2000 1.0000 0.0040 0.0160 0.0080

pivot row-> 2

pivot column-> 5

28

Tableau 6 A = Columns 1 through 7 0 0 0 -15.0000 1.0000 -180.0000 0 15.0000 Column 8 1.0000 0.0300 0.0400 0.0500 Press any key to continue ... 1.0000 0 0 0 0 7.5000 6.0000 10.5000 0 1.0000 0 0 0 -0.5000 2.0000 1.5000 1.0000 0.0300 0.0400 0.0500

End of Phase 1 *********************************

Problem has a finite optimal solution

Values of the legitimate variables: x(1)= x(2)= x(3)= x(4)= 0.040000 0.000000 1.000000 0.000000

Objective value at the optimal point: z= -0.050000

The last entry in column eight, in tableaux 1 through 4, is equal to zero. Recall that this is the current value of the objective function. Simplex algorithm tries to improve a current basic feasible solution and after several attempts it succeeds. Two basic variables in tableaux 1 through 4 are both equal to zero. Based on this observation one can conclude that the problem in question is degenerated. Without a built-in mechanism that prevents cycling this algorithm would never terminate. Another example of the degenerated LP problem is discussed in , Appendix C, pp. 375-376.

29

-

 . +& 

Another method that is of great importance in linear programming is called the Dual Simplex Algorithm. The optimization problem that can be solved with the aid of this method is formulated as follows min(max) z = cTx Subject to Ax  b x0 Components of the vector b are not required to satisfy the nonnegativity constraints. The Dual Simplex Algorithm has numerous applications to other problems of linear programming. It is used, for instance, in some implementations of the Gomory's cutting plane algorithm for solving the integer programming problems. Function dsimplex computes an optimal solution to the optimization problem that is defined above. One of the nice features of this method is its ability to detect the case of the empty feasible region. Function under discussion takes four input parameters types, c, A and b. Their meaning is described in Section 6.7 of this tutorial.
function varargout = dsimplex(type, c, A, b) % The Dual Simplex Algorithm for solving the LP problem % % % % min (max) z = c*x Subject to Ax >= b x >= 0

if type == 'min' mm = 0; else mm = 1; c = -c; end str = 'Would you like to monitor the progress of computations?'; A = -A; b = -b(:); c = c(:)'; [m, n] = size(A); A = [A eye(m) b]; A = [A;[c zeros(1,m+1)]]; question_ans = questdlg(str,'Make a choice Window','Yes','No','No'); if strcmp(question_ans,'Yes') p1 = 'y'; else p1 = 'n'; end if p1 == 'y' disp(sprintf('\n\n Initial tableau')) A

30

disp(sprintf(' Press any key to continue ...\n\n')) pause end subs = n+1:n+m; [bmin, row] = Br(b); tbn = 0; while ~isempty(bmin) & bmin < 0 & abs(bmin) > eps if A(row,1:m+n) >= 0 disp(sprintf('\n\n Empty feasible region\n')) varargout(1)={subs(:)}; varargout(2)={A}; varargout(3) = {zeros(n,1)}; varargout(4) = {0}; return end col = MRTD(A(m+1,1:m+n),A(row,1:m+n)); if p1 == 'y' disp(sprintf(' pivot row-> %g pivot column-> %g',... row,col)) end subs(row) = col; A(row,:)= A(row,:)/A(row,col); for i = 1:m+1 if i ~= row A(i,:)= A(i,:)-A(i,col)*A(row,:); end end tbn = tbn + 1; if p1 == 'y' disp(sprintf('\n\n Tableau %g',tbn)) A disp(sprintf(' Press any key to continue ...\n\n')) pause end [bmin, row] = Br(A(1:m,m+n+1)); end x = zeros(m+n,1); x(subs) = A(1:m,m+n+1); x = x(1:n); if mm == 0 z = -A(m+1,m+n+1); else z = A(m+1,m+n+1); end disp(sprintf('\n\n Problem has a finite optimal solution\n\n')) disp(sprintf('\n Values of the legitimate variables:\n')) for i=1:n disp(sprintf(' x(%d)= %f ',i,x(i))) end disp(sprintf('\n Objective value at the optimal point:\n')) disp(sprintf(' z= %f',z)) disp(sprintf('\n Indices of basic variables in the final tableau:')) varargout(1)={subs(:)}; varargout(2)={A}; varargout(3) = {x}; varargout(4) = {z};

31

Function dsimplex allows a variable number of the output parameters. Indices of the basic variables in the final tableau are always displayed. The final tableau also can be saved in a variable. For instance, execution of the following command [subs, B] = dsimplex(type, c, A, b) will return, among other things, indices of basic variables stored in the variable subs and the final tableau stored in the variable B. Let
type = 'min'; c = [-2 3 4]; A = [-1 –1 –1;2 2 2]; b = [-1;4];

One can easily check that the constraint system defines an empty set. Running function dsimplex, we obtain
subs = dsimplex(type, c, A, b)

Initial tableau A = 1 -2 -2 1 -2 3 1 -2 4 1 0 0 0 1 0 1 -4 0

Press any key to continue ...

pivot row-> 2

pivot column-> 1

Tableau 1 A = 0 1.0000 0 0 1.0000 5.0000 0 1.0000 6.0000 1.0000 0 0 0.5000 -0.5000 -1.0000 -1.0000 2.0000 4.0000

Press any key to continue ...

Empty feasible region

32

subs = 4 1

In this example we will use function dsimplex to find an optimal solution to the problem with four variables and three constraints
type = 'max'; c = [1 2 3 –1]; A = [2 1 5 0;1 2 3 0;1 1 1 1]; b = [20;25;10];

subs = dsimplex(type, c, A, b)

Initial tableau A = -2 -1 -5 0 1 -1 -2 -3 0 0 -1 -1 -1 -1 0 -1 -2 -3 1 0 Press any key to continue ... 0 1 0 0 0 0 1 0 -20 -25 -10 0

pivot row-> 1

pivot column-> 2

Tableau 1 A = 2 3 1 3 1 0 0 0 5 7 4 7 0 0 -1 1 -1 -2 -1 -2 0 1 0 0 0 0 1 0 20 15 10 40

Press any key to continue ...

33

Problem has a finite optimal solution

Values of the legitimate variables: x(1)= x(2)= x(3)= x(4)= 0.000000 20.000000 0.000000 0.000000

Objective value at the optimal point: z= 40.000000 Indices of basic variables in the final tableau: subs = 2 6 7

/

!!     

Topic discussed in this section is of interest in the sensitivity analysis. Suppose that the LP problem has been solved using one of the methods discussed earlier in this tutorial. We assume that the final tableau A and the vector subs - vector of indices of basic variables are given. One wants to find an optimal solution to the original problem with an extra constraint aTx  d or aTx  d added. Function addconstr(type, A, subs, a, rel, d) implements a method that is described in , pp. 171-174.
function addconstr(type, A, subs, a, rel, d) % % % % % % % % % % % % Adding a constraint to the final tableau A. The input parameter subs holds indices of basic variables associated with tableau A. Parameters lhs, rel, and rhs hold information about a costraint to be added: a - coefficients of legitimate variables rel - string describing the inequality sign; for instance, rel = '<' stands for <=. d - constant term of the constraint to be added. Parameter type is a string that describes type of the optimization problem. For the minimization problems type = 'min' and for the maximization problems type = 'max'.

clc str = 'Would you like to monitor the progress of computations?'; question_ans = questdlg(str,'Make a choice Window','Yes','No','No'); if strcmp(question_ans,'Yes')

34

p1 = 'y'; else p1 = 'n'; end [m, n] = size(A); a = a(:)'; lc = length(a); if lc < n-1 a = [a zeros(1,n-lc-1)]; end if type == 'min' ty = -1; else ty = 1; end x = zeros(n-1,1); x(subs) = A(1:m-1,n); dp = a*x; if (dp <= d & rel == '<') | (dp >= d & rel == '>') disp(sprintf('\n\n Problem has a finite optimal solution\n')) disp(sprintf('\n Values of the legitimate variables:\n')) for i=1:n-1 disp(sprintf(' x(%d)= %f ',i,x(i))) end disp(sprintf('\n Objective value at the optimal point:\n')) disp(sprintf(' z= %f',ty*A(m,n))) return end B = [A(:,1:n-1) zeros(m,1) A(:,n)]; if rel == '<' a = [a 1 d]; else a = [a -1 d]; end for i=1:m-1 a = a - a(subs(i))*B(i,:); end if a(end) > 0 a = -a; end A = [B(1:m-1,:);a;B(m,:)]; if p1 == 'y' disp(sprintf('\n\n Initial tableau')) A disp(sprintf(' Press any key to continue ...\n\n')) pause end [bmin, row] = Br(A(1:m,end)); tbn = 0; while ~isempty(bmin) & bmin < 0 & abs(bmin) > eps if A(row,1:n) >= 0 disp(sprintf('\n\n Empty feasible region\n')) return end col = MRTD(A(m+1,1:n),A(row,1:n)); if p1 == 'y'

35

disp(sprintf(' %g',...

pivot row-> %g

pivot column->

row,col)) end subs(row) = col; A(row,:)= A(row,:)/A(row,col); for i = 1:m+1 if i ~= row A(i,:)= A(i,:)-A(i,col)*A(row,:); end end tbn = tbn + 1; if p1 == 'y' disp(sprintf('\n\n Tableau %g',tbn)) A disp(sprintf(' Press any key to continue ...\n\n')) pause end [bmin, row] = Br(A(1:m,end)); end x = zeros(n+1,1); x(subs) = A(1:m,end); x = x(1:n); disp(sprintf('\n\n Problem has a finite optimal solution\n\n')) disp(sprintf('\n Values of the legitimate variables:\n')) for i=1:n disp(sprintf(' x(%d)= %f ',i,x(i))) end disp(sprintf('\n Objective value at the optimal point:\n')) disp(sprintf(' z= %f',ty*A(m+1,n+1)))

The following examples are discussed in , pp. 171-173. Let
type = 'max'; A = [-2 0 5 1 2 –1 6; 11 1 –18 0 –7 4 4; 3 0 2 0 2 1 106]; subs = [4; 2]; a = [4 1 0 4]; rel = '>'; d = 29;

addconstr(type, A, subs, a, rel, d)

36

Initial tableau A = -2 11 -1 3 0 1 0 0 5 -18 2 2 1 0 0 0 2 -7 1 2 -1 4 0 1 0 0 1 0 6 4 -1 106

Press any key to continue ...

pivot row-> 3

pivot column-> 1

Tableau 1 A = 0 0 1 0 0 1 0 0 1 4 -2 8 1 0 0 0 0 4 -1 5 -1 4 0 1 -2 11 -1 3 8 -7 1 103

Press any key to continue ...

Empty feasible region

Changing the additional constraint to 3x1 + x2 + 3x4  20, we obtain
a = [3 1 0 3]; rel = '<'; d = 20;

addconstr(type, A, subs, a, rel, d)

Initial tableau A = -2 11 -2 3 Press any 0 5 1 2 1 -18 0 -7 0 3 0 1 0 2 0 2 key to continue ... -1 4 -1 1 0 0 1 0 6 4 -2 106

pivot row-> 3

pivot column-> 6

37

Tableau 1 A = 0 3 2 1 Press any 0 2 1 1 1 -6 0 -3 0 -3 0 -1 0 5 0 3 key to continue ... 0 0 1 0 -1 4 -1 1 8 -4 2 104

pivot row-> 2

pivot column-> 3

Tableau 2 A = Columns 1 through 7 1.0000 0.3333 0 -0.5000 -0.1667 1.0000 0.5000 -0.5000 0 3.5000 0.8333 0 Column 8 6.6667 0.6667 4.0000 100.6667 Press any key to continue ...

1.0000 0 0 0

0 0.5000 0.5000 0.5000

0 0 1.0000 0

0.3333 -0.6667 -3.0000 4.3333

Problem has a finite optimal solution

Values of the legitimate variables: x(1)= x(2)= x(3)= x(4)= x(5)= x(6)= x(7)= 0.000000 0.000000 0.666667 6.666667 0.000000 4.000000 0.000000

Objective value at the optimal point: z= 100.666667

0 1'2   + 
Some problems that arise in economy can be formulated as the linear programming problems with decision variables being restricted to integral values min(max) z = c*x Subject to Ax  b x  0 and integral

38

where the vector of the right-hand sides b is nonnegative. Among numerous algorithms designed for solving this problem the one, proposed by R.E. Gomory (see , pp. 194-203) is called the cutting plane algorithm. Its implementation, named here cpa, is included in this tutorial
function cpa(type, c, A, b) % Gomory's cutting plane algorithm for solving % the integer programming problem % % % min(max) z = c*x Subject to: Ax <= b x >= 0 and integral

str = 'Would you like to monitor the progress of computations?'; question_ans = questdlg(str,'Make a choice Window','Yes','No','No'); if strcmp(question_ans,'Yes') p1 = 'y'; else p1 = 'n'; end if type == 'min' tp = -1; else tp = 1; end [m,n] = size(A); nlv = n; b = b(:); c = c(:)'; if p1 == 'y' [A,subs] = simplex(type,c,A,b,p1); else [A,subs] = simplex(type,c,A,b); end [m,n] = size(A); d = A(1:m-1,end); pc = fractp(d); tbn = 0; if p1 == 'y' disp(sprintf(' ________________________________________________')) disp(sprintf('\n Tableaux of the Dual Simplex Method')) disp(sprintf(' ________________________________________________')) end while norm(pc,'inf') > eps [el,i] = max(pc); nr = A(i,1:n-1); nr = [-fractp(nr) 1 -el]; B = [A(1:m-1,1:n-1) zeros(m-1,1) A(1:m-1,end)]; B = [B;nr;[A(m,1:n-1) 0 A(end,end)]]; A = B; [m,n] = size(A);

39

[bmin, row] = min(A(1:m-1,end)); while bmin < 0 & abs(bmin) > eps col = MRTD(A(m,1:n-1),A(row,1:n-1)); if p1 == 'y' disp(sprintf('\n pivot row-> %g pivot column-> %g',... row,col)) tbn = tbn + 1; disp(sprintf('\n Tableau %g',tbn)) A disp(sprintf(' Press any key to continue ...\n')) pause end if isempty(col) disp(sprintf('\n Algorithm fails to find an optimal solution.')) return end A(row,:)= A(row,:)./A(row,col); subs(row) = col; for i = 1:m if i ~= row A(i,:)= A(i,:)-A(i,col)*A(row,:); end end [bmin, row] = min(A(1:m-1,end)); end d = A(1:m-1,end); pc = fractp(d); end if p1 == 'y' disp(sprintf('\n Final tableau')) A disp(sprintf(' Press any key to continue ...\n')) pause end x = zeros(n-1,1); x(subs) = A(1:m-1,end); x = x(1:nlv); disp(sprintf('\n Problem has a finite optimal solution\n\n')) disp(sprintf('\n Values of the legitimate variables:\n')) for i=1:nlv disp(sprintf(' x(%d)= %g ',i,x(i))) end disp(sprintf('\n Objective value at the optimal point:\n')) disp(sprintf(' z= %f',tp*A(m,n)))

function y = fractp(x) % Fractional part y of x, where x is a matrix. y = zeros(1,length(x)); ind = find(abs(x - round(x)) >= 100*eps); y(ind) = x(ind) - floor(x(ind));

40

The subfunction fractp is called from within the function cpa. It computes the fractional parts of real numbers that are stored in a matrix. Function cpa makes a call to another function called simplex. The latter finds an optimal solution to the problem that is formulated in the beginning of this section without the integral restrictions imposed on the legitimate variables.

function[A, subs, x, z] = simplex(type, c, A, b, varargin); % The simplex algorithm for the LP problem % % % % % % % % % % % % % % min(max) z = c*x Subject to: Ax <= b x >= 0 Vector b must be nonnegative. For the minimization problems the string type = 'min', otherwise type = 'max'. The fifth input parameter is optional. If it is set to 'y', then the initial and final tableaux are displayed to the screen. Output parameters: A - final tableau of the simplex method subs - indices of the basic variables in the final tableau x - optimal solution z - value of the objective function at x.

if any(b < 0) error(' Right hand sides of the constraint set must be nonnegative.') end if type == 'min' tp = -1; else tp = 1; c = -c; end [m, n] = size(A); A = [A eye(m)]; b = b(:); c = c(:)'; A = [A b]; d = [c zeros(1,m+1)]; A = [A;d]; if nargin == 5 disp(sprintf(' ________________________________________________')) disp(sprintf('\n Tableaux of the Simplex Algorithm')) disp(sprintf(' ________________________________________________')) disp(sprintf('\n Initial tableau\n')) A disp(sprintf(' Press any key to continue ...\n\n')) pause end [mi, col] = Br(A(m+1,1:m+n)); subs = n+1:m+n;

41

while ~isempty(mi) & mi < 0 & abs(mi) > eps t = A(1:m,col); if all(t <= 0) disp(sprintf('\n Problem has unbounded objective function')); x = zeros(n,1); if tp == -1 z = -inf; else z = inf; end return; end row = MRT(A(1:m,m+n+1),A(1:m,col)); if ~isempty(row) A(row,:)= A(row,:)/A(row,col); subs(row) = col; for i = 1:m+1 if i ~= row A(i,:)= A(i,:)-A(i,col)*A(row,:); end end end [mi, col] = Br(A(m+1,1:m+n)); end z = tp*A(m+1,m+n+1); x = zeros(1,m+n); x(subs) = A(1:m,m+n+1); x = x(1:n)'; if nargin == 5 disp(sprintf('\n\n Final tableau')) A disp(sprintf(' Press any key to continue ...\n')) pause end

We will test function cpa on two examples from , pp. 195-201. Let
type = 'min'; c = [1 –3]; A = [1 –1;2 4]; b = [2;15];

Using the option to monitor computations, the following tableaux are displayed to the screen
cpa(type, c, A, b)

42

________________________________________________ Tableaux of the Simplex Algorithm ________________________________________________

Initial tableau

A = 1 2 1 -1 4 -3 1 0 0 0 1 0 2 15 0

Press any key to continue ...

Final tableau A = 1.5000 0.5000 2.5000 0 1.0000 0 1.0000 0 0 0.2500 0.2500 0.7500 5.7500 3.7500 11.2500

Press any key to continue ...

________________________________________________ Tableaux of the Dual Simplex Method ________________________________________________ pivot row-> 3 pivot column-> 4

Tableau 1 A = 1.5000 0.5000 -0.5000 2.5000 0 1.0000 0 0 1.0000 0 0 0 0.2500 0.2500 -0.2500 0.7500 0 0 1.0000 0 5.7500 3.7500 -0.7500 11.2500

Press any key to continue ...

43

Final tableau A = 1 0 2 1 0 1 0 0 1 0 0 0 0 0 1 0 1 1 -4 3 5 3 3 9

Press any key to continue ...

Problem has a finite optimal solution

Values of the legitimate variables: x(1)= 0 x(2)= 3 Objective value at the optimal point: z= -9.000000

Only the initial and final tableaux of the simplex algorithm are displayed. However, the all tableaux generated during the execution of the dual simplex method are included. Let now
type = 'min'; c = [1 –2]; A = [2 1;-4 4]; b = [5;5]; cpa(type, c, A, b)

________________________________________________ Tableaux of the Simplex Algorithm ________________________________________________ Initial tableau A = 2 1 1 0 5 -4 4 0 1 5 1 -2 0 0 0 Press any key to continue ...

44

Final tableau A = 1.0000 0 0.3333 0 1.0000 0.3333 0 0 0.3333 Press any key to continue ... -0.0833 0.1667 0.4167 1.2500 2.5000 3.7500

________________________________________________ Tableaux of the Dual Simplex Method ________________________________________________ pivot row-> 3 pivot column-> 3

Tableau 1 A = 1.0000 0 0.3333 0 1.0000 0.3333 0 0 -0.3333 0 0 0.3333 Press any key to continue ... -0.0833 0.1667 -0.1667 0.4167 0 0 1.0000 0 1.2500 2.5000 -0.5000 3.7500

pivot row-> 4

pivot column-> 4

Tableau 2 A = 1.0000 0 0 0 1.0000 0 0 0 1.0000 0 0 0 0 0 0 Press any key to continue ... -0.2500 0 0.5000 -0.7500 0.2500 1.0000 1.0000 -3.0000 0 1.0000 0 0 0 1.0000 0 0.7500 2.0000 1.5000 -0.7500 3.2500

Final tableau A = 1.0000 0 0 0 1.0000 0 0 0 1.0000 0 0 0 0 0 0 Press any key to continue ... 0 0 0 1.0000 0 1.0000 1.0000 -3.0000 0 1.0000 -0.3333 0 0.6667 -1.3333 0.3333 1.0000 2.0000 1.0000 1.0000 3.0000

45

Problem has a finite optimal solution

Values of the legitimate variables: x(1)= 1 x(2)= 2 Objective value at the optimal point: z= -3.000000

Function cpa has been tested extensively. It failed, however, to compute the optimal solution to the following integer programming problem (see , pp. 208-209) max z = 3x1 + 13x2 Subject to 2x1 + 9x2  40 11x1 –8x2  82 x1, x2  0 and integral In Problem 17 you are asked to determine the cause of the premature termination of computations.

46

3
 M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali, Linear Programming and Network Flows, Second edition, John Wiley & Sons, New York, 1990.  S.G. Nash and A. Sofer, Linear and Nonlinear Programming, The McGraw-Hill Companies, Inc., New York, 1996.  P.R. Thie, An Introduction to Linear Programming and Game Theory, Second edition, John Wiley & Sons, New York, 1988.

47

(
1. Solve the following LP problems geometrically. (i) min z = -3x1 + 9x2 Subject to -x1 + x2  1 x1 + x2  1 x1 + x2  5 3x1 –x2  7 x1 – 3x2  1 x1, x2  0

Let the objective function and the constraint set be the same as in Part (i). Find the optimal solution to the maximization problem. (ii) max z = x1 + x2 Subject to x1 + x2  2 1 x1 x1 + x2  1 -x1 + x2  1.5 x1, x2  0

2. Given the constraint set X = {(x1, x2, x3)T  3 : 0  x1  x2  x3}. (i) (ii) (iii) Write these constraints in the following form Ax  b, x  0. Find the extreme points and the extreme directions, if any, of X. Based on the numerical evidence from Part (ii) of this problem, formulate a hypothesis about the extreme points and the extreme directions of the more general constraint set X = {(x1, x2, … xn)T  n : 0  x1  x2  …  xn}.

3. Give an example of the constraint set with at least three constraints and three variables that have empty feasible region. 4. Consider the system of constraints in the standard form Ax = b, x  0 and b  0, where A is an m-by-n matrix with n  m. Number of all basic feasible solutions to this system is not bigger than

n! . Construct a constraint system with two equations (m = 2) and four m! (n − m )!

variables (n = 4) that has (i) (ii) (iii) no basic feasible solutions exactly one basic feasible solution exactly three distinct basic feasible solutions

Hint: You may wish to perform numerical experiments using function feassol discussed in Section 6.4 of this tutorial.

48

5. Let X denote the constraint set that is described in Problem 1(i). Its graph is shown on page  2 10 of this tutorial. Express point P =   as a convex combination of its extreme points. Is  2 this representation unique? Hint: Compute the extreme points P1, P2, … , Pn of X using function extrpts. Next form a system of linear equations
1P1

+ 2P2 + … + nPn = P 1 + 2 + … + n = 1

where all the 's are nonnegative. Function feassol can be used to find all nonnegative solutions to this system.  3  3 6. Repeat Problem 5 with P =   and P =   .  3  2 7. The feasible region described by the inequalities of Problem 1(i) is bounded. An optimal solution to the minimization (maximization) problem can be found by evaluating the objective function at the extreme points of the feasible region and next finding the smallest (largest) value of the objective function. MATLAB has two functions min and max for computing the smallest and largest numbers in a set. The following command [z, ind] = min(t) finds the smallest number in the set t together with the index ind of the element sought. In this exercise you are to find an optimal solution and the corresponding objective value of the Problem 1(i). Remark. This method for solving the LP problems is not recommended in practice because of its high computational complexity. It is included here for pedagogical reasons only. 8. The following LP problem min (max) = c1x1 + c2x2 + … + cnxn Subject to x1 + x2 + … + xn = 1 x1, x2, … , xn  0 can be solved without using advanced computational methods that are discussed in the Linear Programming class. Write MATLAB function [x, z] = oneconstr(type, c) which takes two input parameters type, where type = 'min' for the minimization problem and type = 'max' for the maximization problem and c – vector of the cost coefficients and returns the optimal solution x and the associated objective value z. 9. The following linear programming problem min (max) z = c*x Subject to Ax  b x unrestricted with b  0 can be solved using function simplex (see Section 6.10). A trick is to use a substitution x = x' – x'', where x', x''  0. Write MATLAB function [x, z, A] = simplexu(type, c, A, b) which computes an optimal solution to the LP problem that is formulated above. The input and the output parameters have the same meaning as those in function simplex. Test your function on the following problem

49

min z = 2x1 – x2 Subject to x1 + x2  2 -x1 + x2  1 x1 –2x2  2 x1, x2 unrestricted Also, find an optimal solution to the maximization problem using the same objective function and the same constraint set. Drop the first inequality in the constraint set and solve the maximization problem for the same objective function. 10. In this exercise you are to write MATLAB function x = nnsol(A, b) which computes a nonnegative solution x, if any, to the system of linear equations Ax = b. A trick that can be used is to add a single artificial variable to each equation and next apply a technique of Phase 1 of the Dual Simplex Algorithm with the objective function being equal to the sum of all artificial variables. See , Section 3.6 for more details. Recall that function feassol, discussed earlier in this tutorial, computes all nonnegative solutions to the constraint system that is in the standard form. A method used in this function is quite expensive and therefore is not recommended for computations with large systems. 11. Write MATLAB function Y = rotright(X, k) that takes a matrix X and a nonnegative integer k and returns a matrix Y whose columns are obtained from columns of the matrix X by cycling them k positions to the right, i.e., if X = [ x1, x2, … , xn], then Y = [xk+1, …, xn, x1, … , xk], where xl stands for the lth column of X. Function rotright may be used by MATLAB functions you are to write in Problems 12 and 13. 12. The following problem is of interest in interpolation by shape preserving spline functions. Given nonnegative numbers b1, b2, … , bn. Find the nonnegative numbers p1, p2, … ,pn+1 that satisfy a system of linear inequalities 2pl + pl+1  bl  pl + 2pl+1 , l = 1, 2, … , n. This problem can be converted easily to the problem of finding a basic feasible solution of a constraint set in standard form Ap = d, p  0. (i) (ii) (iii) What is the structure of the constraint matrix A? How would you compute the column vector d? Write MATLAB function p = slopec(b) which computes a nonnegative vector p that satisfies the system of inequalities in this problem. You may wish to make calls from within your function to the function nnsol of Problem 10. Test your function for the following vectors b = [1; 2] and b = [2; 1].

(iv)

13. Another problem that arose in interpolation theory has the same constraint set as the one in Problem 12 with additional conditions imposed on the legitimate variables p1  p2  …  pn+1. Answer the questions (i) and (ii) of Problem 12 and write MATLAB function p = slopei(b) which computes a solution to the associated LP problem. Also, test your function using vectors b = [1; 2; 3] and b = [3; 2; 1].

50

14. Some LP problems can be solved using different methods that are discussed in this tutorial. A choice of a right method is often based on the criterion of its computational complexity. MATLAB allows a user to count a number of flops (the floating point operations +, -, *, /) needed by a particular algorithm. To obtain an information about a number of flops used type the following commands: flops(0) functionname flops First command sets up the counter to zero. Next a function is executed and finally a number of flops used is displayed in the Command Window. Suppose that one wants to find an optimal solution to the following LP problem max (min) z = c*x Subject to Ax  b x0 (b  0). Function simplex, included in Section 6.10, can be used to compute an optimal solution of this problem. Another option is to use function simplex2p (see Section 6.7). Third method that would be used is the Dual Simplex Algorithm discussed in Section 6.8. Compare computational complexity of these three methods solving the LP problems of your choice. You may begin your experiment using the LP problem in Example 1 (see , page 104). 15. Time of execution of a function is also considered as a decisive factor in choosing a computational method for solving a particular problem. MATLAB has a pair of functions named tic and toc used to measure a time of computations. To use these functions issue the following commands: tic, functionname; toc. Compare time of execution of three functions simplex, simplex2p, and dsimplex solving the LP problems of your choice. During the execution of functions simplex2p and dsimplex you will be asked whether or not you wish to monitor the progress of computations. In both instances click on the No button. 16. Consider the following LP problem with bounded variables min (max) z = cTx Subject to Ax  b 0xu where u is a given positive vector and b  0. Special methods for solving this problem are discussed in  and . For the LP problems with a small number of constraints one can add the upper bound constraints x  u to the original constraint set and next solve the new problem using the simplex method. In this exercise you are to write MATLAB function [x, z, B] = simplub(type, c, A, b, u) which computes an optimal solution x to the problem under discussion. Other output parameters include the objective value z at the optimal solution and the final tableau B that is generated by the simplex method. You may wish to use the function simplex included in Section 6.10. Test your function on the LP problems of your choice.

51

17. Use function simplex2p to solve the optimization problem discussed in , Appendix C, pp. 375 - 376. Explain why this problem is degenerated. Display all the intermediate tableaux generated by the function simplex2p. 18. Run function cpa on the LP problem that is discussed in , Example 3, pp. 208-209 (see also pages 44 - 45 of this tutorial). Analyze the intermediate tableaux generated by this function. Explain why function cpa terminates computations without finding an optimal solution. 